• 제목/요약/키워드: Hydraulic Servo Control

검색결과 245건 처리시간 0.028초

일체형 파드백 기구를 갖는 유압 서보실린더 개발 연구 (Development of a Hydraulic Servo Cylinder with an Integrated Feedback Mechamism)

  • 이재규;김옥현
    • 대한기계학회논문집A
    • /
    • 제20권8호
    • /
    • pp.2480-2490
    • /
    • 1996
  • This paper presents a new type of hydraulic servo chllinder which is characterized by its simple construction and an ubtegrated feedback mechanism. Piston position of the cylinder is controlled by eletrical input and mechamical feedback deduced from its own structure. Hydraulic pressure in each cylinder room is controlled by a poppet valve. The poppet is activated by a solenoid and is linked to the piston. Solenoid input current pulls up the poppet, which results in pressure drop and thus piston motion. The piston motion generates pull down force on the poppet by the linkage and the motion stops at equilibrium. In that way the piston position is controlled by an expernal input current. Characteristics of the servo cylinder is verified by stability analysis, tranient vehavior and steady state positing for step input. Design parameter analyses have been executed by derivation of analytical approximate solutions and by computer simulations. A prototype hydraulic servo cylinder is developed and tested. The experimental results show successful function of the servo cylinder and consistency with the theoritical results.

발전소용 유압 서보액추에이터의 쿠션 모델링 및 시뮬레이션 (Modeling & Simulation of a Hydraulic Servo Actuator Cushion for Power Plants)

  • 이용범;윤영환
    • Tribology and Lubricants
    • /
    • 제29권1호
    • /
    • pp.7-12
    • /
    • 2013
  • Turbine power control devices at a nuclear / thermoelectric power plant lead to failure by creating mechanical shocks and strong vibrations that are due to the strong elasticity of a spring and the inertia of the valve face during its rapid movement to block steam. To ensure durability of the turbine power control device, which is the main component in the power plant, it is necessary to develop a device that can prevent such vibrations. In this study, a cushion mechanism is added to the head of the hydraulic servo actuator, which is a turbine power control device. Moreover, the cushion mechanism, which includes various modifies shapes and orifices is investigated dynamically through modeling and simulations.

3축 유압 도로 시뮬레이터의 정량적 피드백 제어 시스템 설계 (Design of Quantitative Feedback Control System for the Three Axes Hydraulic Road Simulator)

  • 김진완;현동길;김영배
    • 대한기계학회논문집A
    • /
    • 제32권3호
    • /
    • pp.280-289
    • /
    • 2008
  • This paper presents design of the quantitative feedback control system of the three axes hydraulic road simulator with respect to the dummy wheel for uncertain multiple input-output(MIMO) feedback systems. This simulator has the uncertain parameters such as fluid compressibility, fluid leakage, electrical servo components and nonlinear mechanical connections. This works have reproduced the random input signal to implement the real road vibration's data in the lab. The replaced $m^2$ MISO equivalent control systems satisfied the design specifications of the original $m^*m$ MIMO control system and developed the mathematical method using quantitative feedback theory based on schauder's fixed point theorem. This control system illustrates a tracking performance of the closed-loop controller with low order transfer function G(s) and pre-filter F(s) having the minimum bandwidth for parameters of uncertain plant. The efficacy of the designed controller is verified through the dynamic simulation with combined hydraulic model and Adams simulator model. The Matlab simulation results to connect with Adams simulator model show that the proposed control technique works well under uncertain hydraulic plant system. The designed control system has satisfied robust performance with stability bounds, tracking bounds and disturbance. The Hydraulic road simulator consists of the specimen, hydraulic pump, servo valve, hydraulic actuator and its control equipments

점검환경에서 유압서보제어기 검증효율을 개선하기 위한 유압식 구동장치 시뮬레이터 개발 (Development of an Electronic Simulator for Efficiency Improvement to Verify Electro-Hydraulic Servo Controllers in an Examination Set-up)

  • 한승철
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권3호
    • /
    • pp.50-57
    • /
    • 2017
  • Recently, methods of verification for electro-hydraulic servo controllers are various and the required number of testing controllers is continuously increasing in some specific systems. In this study, a PCB-based electronic simulator of hydraulic actuators is designed and developed to simplify test set-up for controllers and to facilitate alteration for characteristics of the simulator. Several features to reduce required time and manpower for verifying controllers are described. Especially, the simulator is considerably efficient to examine some controllers for different hydraulic actuators in a test. Response characteristics of the simulator are compared with those of real actuators to demonstrate validity of this method. Results reveal utilizing the designed simulator for inspecting controllers is equally effective as using hydraulic actuators.

동축 회전형 스풀을 가진 전기 유압 서어보 위치 제어기를 이용한 크레인의 원격제어 (Remote control scheme for cranes using electro-hydraulic servo positioner with coaxial rotary spool)

  • 김홍집;김경진;현웅근;서일홍;오상록
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.693-697
    • /
    • 1990
  • A position control system is developed for an electro-hydraulic servo actuator with coaxial rotary spool, where the actuator is controlled by stepping motor. The position control system is utilized to develop the wireless remotely controlled crane system. And remote engine control system is also developed. Finally, to show the validity of this system, some experimental results and field test results am presented.

  • PDF

전기.유압 서보 시스템의 제어성능 비교 (Comparison of Control Performance in Electro.hydraulic Servo Systems)

  • 김도태;박경섭
    • 유공압시스템학회논문집
    • /
    • 제3권2호
    • /
    • pp.14-20
    • /
    • 2006
  • A controller design procedure for an electro-hydraulic positioning systems has been developed using $H{\infty}$ control. The generalized plant models and weighting function for multiplicative uncertainty modelling error was presented along with $H{\infty}$ controller designs in order to investigate the robust stability and performance. Both disturbance rejection and command tracking performances were improved with the $H{\infty}$ controller, and the better uniformity of time response is achieved across wide range of operating conditions than the PID, LQR and LQG control scheme. The multiplicative uncertainty case was specifically suited for the design of an electro-hydraulic positioning control systems using $H{\infty}$ control.

  • PDF

A Consideration on Load Disturbance Characteristics of Realtime Adaptive Learning Controller based on an Evolutionary algorithms - Application to an Electro Hydraulic Servo System

  • Sung-Ouk;Lee, Jin-Kul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.176.3-176
    • /
    • 2001
  • Hydraulic servo system has the characteristic of high power in itself, as combining its characteristics with excellent electro equipment that comes from the development of electronics, electro-hydraulic servo system is widely used in industry that are requested high precision and power Electro-hydraulic servo system is characteristic of very strong non-linearity in itself and it is mainly applied the field of the inner or outer fluctuating load or disturbance in industry. Evolutionary computation based on the natural evolutionary process may solve many engineering problems. Algorithms can represent the natural selection in crossovers, mutations, production of the offspring, selection, etc. Nature has already shown is the superiority through ...

  • PDF

전기-유압 서보 시스템의 모델규명 및 이산시간 슬라이딩 모드 제어 (Model Indentification and Discrete-Time Sliding Mode Control of Electro-Hydraulic Systems)

  • 엄상오;황이철;박영산
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.94-103
    • /
    • 2000
  • This paper describes the model identification and the discrete-time sliding mode control of electro-hydraulic servo systems which are composed of servo valves, double-rod cylinder and load mass. The controlled plant is identified as a 3th-order discrete-time ARMAX model obtained from the prediction error algorithm, where a nominal model and modeling errors are zuantitatively constructed. The discrete sliding mode controller for 3th-order ARMAX model is designed in discrete-time domain, where all states are observed from Kalman filter. The discrete sliding mode controller has better tracking performance than that obtained from continuous-time sliding mode controller, in experiment.

  • PDF

보행 로봇을 위한 서보밸브 구동 유압 액추에이터의 특성 분석 (A Study of Hydraulic Actuator Based On Electro Servo Valve For A Walking Robot)

  • 조정산
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권2호
    • /
    • pp.26-33
    • /
    • 2016
  • This paper describes of a mathematical and real experimental analysis for a walking robot which uses servo valve driven hydraulic actuator. Recently, many researchers are developing a walking robot based on hydraulic systems for the difficult and dangerous missions such as walking in the rough terrain and carrying a heavy load. In order to design and control a walking robot, the characteristics of the hydraulic actuators in the joint through the view point of walking such as controllability and backdrivability must be analyzed. A general mathematical model was used for analysis and proceeds to position and pressure changes characteristic of the input and backdrivability experiment. The result shows the actuator is a velocity source, had a high impedance, the output stiffness is high in contact with the rigid external force. So stand above the controller and instruments that complement the design characteristics can be seen the need to apply a hydraulic actuator in walking robot.

유압 서보시스템을 위한 적응제어기 설계 (The Design of Adaptive Controller for a Hydraulic Servo Motor)

  • 이상윤;신위재
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 하계종합학술대회논문집
    • /
    • pp.231-234
    • /
    • 1998
  • In this paper, we proposed a adaptive controller which need not adjustment of the scale factor. We have verified by experimental results that applying this proposed adaptive control algorithm to a hydraulic servo system is very satisfactory.

  • PDF