• Title/Summary/Keyword: Hydraulic Proportional Control Valve

Search Result 76, Processing Time 0.023 seconds

Design of Fuzzy-Power Controller for a Pump with Electric Proportional Valve (절자 비례 밸브를 갖는 펌프의 퍼지-동력제어기 설계)

  • 전순용
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.4
    • /
    • pp.441-447
    • /
    • 1998
  • Motivated by a recent work, a fuzzy-power-controller(FPC) is designed for the relieving-horsepower control of output variable pump with electrical proportional valve and actually implemented on the industrial excavator. In order to calculate the output power of pump with input of FPC, a linear discrete time model of load system to pump is obtained and the result is applied to control the engine-pump coupled system by software without pressure and flow sensor. The FPC controls the engine and pump coupled system by relieving horsepower control according to the change of load and the running conditions in relieving horsepower control are selected by fuzzy inference engine. A case study is peformed through the construction of the control device and installation on the excavator. It shows that the relieving-horsepower control system with the FPC, as suggested in this paper, is superior to the conventional PID controllers. And also, the excavator, with the FPC, shows that the power-loss of the coupled system is reduced and the running speed of the hydraulic actuator is enhanced.

  • PDF

Study on Attitude Control System of Rotary Implement Attached on Agricultural Tractor (트랙터 로타리 작업기용 자세 제어 시스템에 관한 연구)

  • Lee, J.Y.;Go, W.;Shim, J.S.;Shin, H.C.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.5
    • /
    • pp.427-438
    • /
    • 1998
  • In Korea, rotary implements are mainly utilized in the tillage operation. The attitude control system for rolling phenominon of tractors, which in caused due to uneven ground surfaces and sinkage of tractor wheels, is one of the most important control systems in agricultural tractors. The attitude control system of a rotary implement, attached on tractors, was designed and fabricated in this study. The control system was largely composed of four main units; a setting unit, a detection unit, a controller and a hydraulic unit. The implement was controlled by control signals from a computer proportional to controlled errors, on/off action of two directional solenoide valve and lift cylinder on the right lift rod. Response characteristic experiments for the control system fabricated in this study were carried out indoors and outdoors. The results of experiments showed the response characteristics sufficient to use as the attitude control system of rotary implements for agricultural tractors.

  • PDF

Analysis of dynamic characteristics of proportional control valve for auto-steering tractor (자동 조향 트랙터용 비례제어밸브의 동특성 분석)

  • Min, Yee-Seo;Kim, Yong-Joo;Kim, Wan-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.5
    • /
    • pp.349-359
    • /
    • 2022
  • The aim of this study is to analyze the dynamic characteristics of proportional control valves according to various working conditions as a basic study for developing proportional control valves for auto-steering tractors. The dynamic characteristics of proportional valves were measured using hydraulic characteristics measurement system, and the power was analyzed using measured flow rate and pressure data. As the experimental conditions, the tractor engine speed and steering angle was selected as the main variables, and the experiment was performed on urethane road conditions. As a result, it was found that the flow rate, pressure, and power of the proportional control valve increased as the tractor engine speed and steering angle increased. In particular, as the steering angle increased at the same engine speed, the flow rate, pressure, and power tended to increase by up to 190%, 172%, and 273%, respectively. Similarly, as the engine speed increased at the same steering angle, the flow rate, pressure, and power tended to increase up to 161%, 122%, and 168%, respectively. Therefore, it can be seen that the steering angle has a higher influence on the dynamic characteristics of the proportional control valve than the engine speed.

Determination of PID Coefficients for the Ascending and Descending System Using Proportional Valve of a Rice Transplanter

  • Siddique, Md. Abu Ayub;Kim, Wan-Soo;Baek, Seung-Yun;Kim, Yeon-Soo;Choi, Chang-Hyun;Kim, Yong-Joo;Park, Jin-Kam
    • Journal of Biosystems Engineering
    • /
    • v.43 no.4
    • /
    • pp.331-341
    • /
    • 2018
  • Purpose: This study was conducted to develop a linear Proportional-Integral-Derivative (PID) control algorithm for the ascending and descending system of a rice transplanter and to analyze its response characteristics. Methods: A hydraulic model using a single-acting actuator, proportional valve and a PID control algorithm were developed for the ascending and descending system. The PID coefficients are tuned using the Ziegler-Nichols (Z-N) method and the characteristics of unit step response are analyzed to select the PID coefficients at various pump speeds. Results: Results showed that the performance of the PID controller was superior in any condition. It was found that the highest settling time and maximum overshoot were less than 0.210 s and 5%, respectively at all pump speed. It was determined that the steady state errors were 0% in all the cases. The lowest overshoot and settling time were calculated to be nearly 2.56% and 0.205 s, respectively at the pump rated speed (2650 rpm). Conclusions: The results indicated that the developed PID control algorithm would be feasible for the ascending and descending system of a rice transplanter. Finally, it would be helpful to plant the seedlings uniformly and improve the performance of the rice transplanter.

Synchronization Control of Two Hydraulic Cylinders Using Feedback Linearization Compensator and Disturbance Observer (피드백 선형화 보상기와 외란 관측기를 이용한 2개 유압 실린더의 동기 제어)

  • Kam, J.S.;Oh, D.H.;Lee, I.Y.;Kim, J.W.;Lee, H.C.
    • Journal of Drive and Control
    • /
    • v.10 no.3
    • /
    • pp.14-20
    • /
    • 2013
  • In the study, a control strategy using a feedback linearization compensator and a disturbance observer was suggested and applied to the synchronization control of two hydraulic cylinders. The hydraulic system consists of a proportional directional control valve with overlap characteristic near the neutral position, a conventional hydraulic cylinder and an external load. The control performances of the system were verified through numerical simulations. From the simulations, it was ascertained that excellent control performances were obtained with the suggested control strategy.

A Study on Position Control of an Electro-Hydraulic Servo System Using High Speed On-Off Valves (고속전자밸브를 사용한 전기유압서보시스템의 위치제어에 관한 연구)

  • 허준영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.369-378
    • /
    • 1999
  • This paper presents position control of an electro-hydraulic servo system whoch is operated by four 2-2way high speed on-off valves with either PWM PID control method or sliding mode control method, The advantages of using high speed on-off valves instead of electo-hydraulic servo valves or electro-hydraulic proportional valves are low price robustness for oil contamination and direct control without a D/A converter. The system consists of load cylinder inertia car potentiometer and external load cylinder. The experiments were carried out under several conditions and the results were compared. As a result the sliding mode method has shown good control performance and the robust and stable positioning of the elector-hydraulic servo system can be achieved accurately.

  • PDF

Implementation of Roll Control System for Passenger Car (승용차의 차량 롤 제어를 위한 시스템 구현)

  • 장주섭;이상호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.20-26
    • /
    • 1997
  • A System for reducing vehicle body roll by active control is developed. The stabilizer bar with hydraulic rotary actuator produces anti-roll moment which suppresses roll tendency. This reduction of roll improves the driving safety as well as the ride comfort. Vehicle test data shows considerable reduction of roll angle during steady-state turning. Also improvement of ride comfort is achieved by making the actuator freely rotatable, i.e. by connecting all chambers of actuator in normal driving conditions. A control algorithm using steering wheel angle and vehicle speed signal as input valve is applied. It is compared with signal of the G-sensor.

  • PDF

Durability Evaluation of ER Fluids in Hydraulic Control Systems (유압제어시스템 적용을 위한 ER 밸브의 내구성 평가)

  • Kim, Do-Tae;Jang, Sung-Cheol
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.100-105
    • /
    • 2007
  • Electro-rheological(ER) fluid and valve are fabricated and evaluated experimentally in its durability to utilize the hydraulic control systems for long term operation. The two-ports ER valve used in the experiment consist of twelve parallel multi-layer electrodes and provide a restriction to the passage of ER fluid because of the viscous pressure drop and a component induced by the electric field. The durability test of ER valve are performed by measuring the surface roughness of electrodes with variation of an electric field strength and test time(1000 or 1800min.). Also, the shear stress and shear rate are measured to evaluate the durability of ER fluid as function of time. After durability test, ER shear stress increases approximately proportional to the shear rate with applied electric field intensity, In the ER valve, the center line average height roughness(Ra) of copper electrode increases about 1.56 times and ten-point median height roughness(Rz) increases about 2.2 times after the durability test. An understanding of these durability is essential to predicting the service life of ER fluid and valves.

Nonlinear adaptive control of a quarter car active suspension (1/4 차 능동현가계의 비선형 적응제어)

  • Kim, Eung-Seok
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.582-589
    • /
    • 1996
  • In this paper, an adaptive control problem of a hydraulic actuator for vehicle active suspension controller is divided into two parts: the inner loop controller and the outer loop controller. Inner loop controller, which is a nonlinear adaptive controller, is designed to control the force generated by the nonlinear hydraulic actuator acting under the effects of Coulomb friction. For simplicity of designing a nonlinear controller, the spool valve dynamics of a hydraulic actuator is reduced using a singular perturbation technique. The estimation error signal used to an indirect parameter adaptation is calculated without a regressor filtering. The absolute velocity of a sprung mass will be damped down by its negatively proportional term(sky-hook damper) adopted as an outer loop controller. Simulation results are presented to show the importance of controlling the actuator force and the validity of the proposed adaptive controller. (author). refs., figs. tab.

  • PDF

A Study on Characteristics of Dump and Reducing Valve for Hydraulic Remote Control System (유압원격제어를 위한 덤프와 감압밸브의 특성에 관한 연구)

  • Oh, Cheoul-Hwan;Kim, Kwang;Song, Chang-Seoup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.3
    • /
    • pp.81-90
    • /
    • 1988
  • In recent, the requirement of remote control of hychaulic system is in- creasing. The actuator unit whose output position is proportional to input electrical signal needs a pressure reducer and a dump valve. The pressure reducer provides a constant regulated pressure and filters contaminants. The dump valve supplies proper pressure to the pressure reducer and unloads when the system is not operated. In this thesis, dump valve and pressure reducer with auxiliary function are studied. The choke in the pressure reducer prevents actuator from supplying higher pressure than necessary pressure at beginning, and the spring constant affects on the dynamic characterisics. In dump valve, it is proved that diameter of servo-slide hold and choke diameter of dump plunger affects on damping response.

  • PDF