• 제목/요약/키워드: Hydraulic Properties

Search Result 677, Processing Time 0.029 seconds

Development of Infiltration Model Considering Temporal Variation of Soil Physical Properties Under Rainfalls (토양의 물리적 특성의 변화를 고려한 강우의 침투모형 개발)

  • 정하우;김성준
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.36-46
    • /
    • 1993
  • The purposes of this study are to develop three-layered Green-Ampt infiltration model considering temporal variation of physical properties of soil and to evaluate the model with field experiment on bare-tilled and soybean-growing soil plots under natural rainfalls. Infiltration tests were conducted on a sandy loam soil. The model has three-layered soil profile including a surface crust, a tilled layer, a subsoil and considers temporal variation of porosity, hydraulic conductivity, capillary pressure head on a tilled layer by natural rainfalls and canopy density variation of crop. Field measurement of porosity, average hydraulic conductivity and average capillary presure head on a tilled layer were conducted by soil sampler and air-entry permeameter at regular intervals-after tillage. It was found that temporal variation of porosity and average hydraulic conductivity might be expressed as a function of cumulative rainfall energy and average capillary pressure head might be expressed as a function of porosity of a tilled soil. The model was calibrated by an optimization technique, Hooke and Jeeves method using hourly surface runoff data. With the calibrated parameters, the model was verified satisfactorily.

  • PDF

A Study on Change of Soil-Water Retention Curve with Different Net Confining Pressures and Porosities using a Suction-Saturation Control Technique (흡입력-포화도 조절 기법을 이용한 불포화토의 함수특성곡선에 미치는 간극비 및 순구속압력의 영향 연구)

  • Lee, Joon-Yong;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.93-103
    • /
    • 2012
  • A suction-saturation control technique based on flow pump system was developed to investigate hydraulic properties in unsaturated soils. The flow pump system is designed based on the principle of the axis-translation technique and triaxial equipment, and gives the suction-time and suction-saturation curves, the primary relationship needed for interpreting the response of unsaturated soils and link between theory and the material properties in unsaturated soil mechanics. Using the suction-saturation control technique, suction-time relationship and soil-water retention curve (SWRC) during hydraulic hysteresis were investigated with different net confining pressures and porosities. Three types of soils-two sands and a silt were used in this paper. This paper showed the effect of the hysteresis on the SWRC due to different net confining pressures and porosities. This means that a careful decision must be made as to which condition is to be modeled, since the delicate difference of the conditions in physical modeling can cause the different experimental output.

The roll gap control hydraulic hot strip mill using time delay control method (TDC기법을 이용한 유압식 열연압연기의 롤갭제어)

  • 홍성철;현장환;이정오
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1469-1472
    • /
    • 1996
  • Hydraulic Hot Strip Mill (HHSM) rolls materials whose size and stiffness are various. So a roll gap controller for HHSM was designed using TDC(Time Delay Control) method. The performance of the roll gap control was evaluated through computer simulations. The simulation results indicate that TDC method show excellent robustness and tracking properties against PID control method in various rolling conditions.

  • PDF

A study on the position control of an electro-hydraulic servomechanism using variable structure system (가변구조를 이용한 전기-유압서어보계의 위치제어에 관한 연구)

  • 허순영;권기수;하석훈;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10a
    • /
    • pp.299-304
    • /
    • 1988
  • This paper describes the application of the variable structure control(VSC) concept for the position control of electro-hydraulic servomtor system. The basic philosopy of VSC is that the structure of the feedback control is altered as the state crosses discontinuity surfaces in the state surface with the result that certain desirable properties are achieved. The switching of the control function yields total(or selective) invariance to system parameter variations and disturbances, and closed loop eigen value placement in time-varing and uncertain systems.

  • PDF

The Evaluation of Tube to Tubesheet Joint Part on Nuclear S/G (원자력 증기발생기 튜브/튜브시트 확관방법별 특성평가)

  • 심상한;배강국;김인수
    • Proceedings of the KWS Conference
    • /
    • 1996.05a
    • /
    • pp.34-37
    • /
    • 1996
  • The expanding method of tube to tubesheet joint part on neclear steam generators are classified into three classes of roller expanding, explosive expanding and hydraulic expanding. After the expanded Mock-Up specimen are made by the three expanding method. The general properties, microstructure/microvickers hardness, pull-out strength, hydraulic leak pressure, of tube to tubesheet joint part were inspected. and We evaluated the operation efficiency of expansion, reproduction of expanded joint about three expanding method. Through the overall evaluation of tube to tubesheet joint part, The hydraukic expanding and explosive expanding could be certificated more useful expanding method.

  • PDF

Measuring elastic modulus of bacterial biofilms in a liquid phase using atomic force microscopy

  • Kim, Yong-Min;Kwon, Tae-Hyuk;Kim, Seungchul
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.863-870
    • /
    • 2017
  • With the increasing interest in using bacterial biofilms in geo-engineering practices, such as soil improvement, sealing leakage in earth structures, and hydraulic barrier installation, understanding of the contribution of bacterial biofilm formation to mechanical and hydraulic behavior of soils is important. While mechanical properties of soft gel-like biofilms need to be identified for appropriate modeling and prediction of behaviors of biofilm-associated soils, elastic properties of biofilms remain poorly understood. Therefore, this study investigated the microscale Young's modulus of biofilms produced by Shewanella oneidensis MR-1 in a liquid phase. The indentation test was performed on a biofilm sample using the atomic force microscopy (AFM) with a spherical indentor, and the force-indentation responses were obtained during approach and retraction traces. Young's modulus of biofilms was estimated to be ~33-38 kPa from these force-indentation curves and Hertzian contact theory. It appears that the AFM indentation result captures the microscale local characteristics of biofilms and its stiffness is relatively large compared to the other methods, including rheometer and hydrodynamic shear tests, which reflect the average macro-scale behaviors. While modeling of mechanical behaviors of biofilm-associated soils requires the properties of each component, the obtained results provide information on the mechanical properties of biofilms that can be considered as cementing, gluing, or filling materials in soils.

Carbonation Properties of Recycled Cement Mortar made of Cementitious Powder from Concrete Waste (폐콘크리트 미분말을 이용한 재생시멘트 모르터의 중성화 특성)

  • Kim Jin-Yang;Park Cha-Won;Ahn Jae-Cheol;Kang Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.61-64
    • /
    • 2005
  • Recently, there have been many studies about recycling cementitious powder from concrete waste(hereinafter referred to as waste powder), generated after recycle aggregate production. Previous studies showed that when the heating process of waste powder at $700^{\circ}C,\;Ca(OH)_2$ in paste is dehydrated making possible the restoration of hydraulic properties. Recycled cement with hydraulic properties restored is thought to be re-hydrated through the mechanism of hydration, which is almost similar in Portland cement. This clearly suggests that the hydrate of recycled cement is alkali in type. Like in general concrete, if recycled cement is used as a structural material, resistance performance against carbonation or neutralization by $CaCO_3$ in air probably would be most influential to the life of steel-reinforced concrete structure. Thus the purpose of this study is to make an experimental review on chemical properties of recycled cement, manufactured with concrete waste as base material, and investigate the durability of concrete using recycled cement through evaluating the cement s performance of resistance to carbonation in accordance with its accelerating age. Based on its results, further, the study seeks to provide basic information about ways of utilizing recycled cement.

  • PDF

Changes in Physical Properties of Dredged Soils by Drying (건조에 의한 준설 매립 지반에 물리적 특성변화)

  • Yonn Yong-Han;Kim Won-Tae
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.2 s.115
    • /
    • pp.36-43
    • /
    • 2006
  • This study was carried out to determine the ways in which drying improves and develops dredged soils which exist widely in the lowlands of Korea. Before drying there were large variations in the fundamental physico-chemical properties of dredged soils collected from different places. In the sample soils, saturated hydraulic conductivity decreased gradually with an increase in bulk density with the exception that in air-dried soils a reverse trend was observed. Also in the sample soils, the sedimentation volume and the consistency limits decreased gradually with the decrease in soil water content after the air-drying treatment. The porosity of the sample soils decreased from $0.67{\sim}0.87m^3/m^3\;to\;0.58{\sim}0.66m^3/m^3$ and the liquid-phase range decreased from $0.41{\sim}0.83m^3/m^3\;to\;0.29{\sim}0.71m^3/m^3$. The solid-phase range of sample soils increased $0.13{\sim}0.33m^3/m^3\;to\;0.24{\sim}0.37m^3/m^3$ same as above with air-drying treatment. In conclusion the air-drying treatment caused an irreversible effect on some physical properties. Accordingly, these facts indicate that the effects of air-drying treatment on these properties are considered to be resulted from irreversible changes in the structural status of the sample soils.