• 제목/요약/키워드: Hydraulic Pressure Test

검색결과 483건 처리시간 0.025초

수평 사각 마이크로채널 내에서의 2상 유동 압력강하 (Two-phase Pressure Drop in a Horizontal Rectangular Microchannel)

  • 허철;김무환
    • 대한기계학회논문집B
    • /
    • 제30권11호
    • /
    • pp.1035-1042
    • /
    • 2006
  • An experimental investigation was performed to study two-phase pressure drop of deionized water in a microchannel. Measurement and evaluation of two-phase frictional pressure gradient were carried out using a single horizontal rectangular microchanne1 having a hydraulic diameter of $100{\mu}m$. Tests were performed for mass fluxes of 90, 169, and 267 $kg/m^2$s and heat fluxes of 200-700 $kW/m^2$. Test results showed that the measured two-phase frictional pressure gradient increased with the mass flux and vapor quality. Most macro-channel correlations of two-phase frictional pressure gradient did not provide reliable predictions except under certain limited conditions.

블리드 방식 가변력 솔레노이드를 사용한 라인압력 제어계의 실험적 연구 (An Experimental Study on the Transmission Line Pressure Control System Using Bleed Type Variable Force Solenoid)

  • 최득환;진영욱
    • 한국산학기술학회논문지
    • /
    • 제8권4호
    • /
    • pp.703-707
    • /
    • 2007
  • 블리드 방식의 가변력 솔레노이드를 사용한 자동차용 변속기의 라인압력 제어계에 대한 실험 장치를 구성하고 실험을 수행하였다. 라인압력 제어계의 유압회로를 라인압력 제어 밸브, 감압 밸브, VFS 및 어큐뮬레이터 그리고 여러 개의 오리피스들로 구성하였으며, 몇 가지 실험 조건에 대하여 라인압력 제어계의 드로틀 압력과 라인압력의 정적 응답 및 동적 응답성을 측정하고 고찰하였다.

  • PDF

PWM 제어에 의한 솔레노이드-유량제어방식 ABS의 제동압력 특성 (Braking Pressure Characteristics of Solenoid-Flow Control Type ABS by PWM Control)

  • 송창섭;양해정
    • 한국정밀공학회지
    • /
    • 제14권8호
    • /
    • pp.146-154
    • /
    • 1997
  • Solenoid-folw control type ABS is used with a 'dump and reapply' pressure control arrangement instead of using 2/2 (normal open/close) solenoid valves in convensional systems(sol. -sol. control type), a flow control valve is used which replaces the (no) inlet valve. The flow control valve controls fluid flow providing a nearly constant reapply rate( .theta. ) after the dump plase of ABS operation. In this study, to investigate a characteristics of brake pressure by PWM control, test rig was consisted of ABS hydraulic modulator, digital controller, pneumatic power supply and brake master cylinder. For comparison with experi- mental results, system modelling and computer simulation were performed. As a result, experiment results showed fairly agreement with the simulation. Also, it is shown that the pressure gradient (tan .theta. ) is affected by pressure, frequency, duty ratio and expressed with an exponential funtion.

  • PDF

CFD ANALYSIS OF HEAVY LIQUID METAL FLOW IN THE CORE OF THE HELIOS LOOP

  • Batta, A.;Cho, Jae-Hyun;Class, A.G.;Hwang, Il-Soon
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.656-661
    • /
    • 2010
  • Lead-alloys are very attractive nuclear coolants due to their thermo-hydraulic, chemical, and neutronic properties. By utilizing the HELIOS (Heavy Eutectic liquid metal Loop for Integral test of Operability and Safety of PEACER$^2$) facility, a thermal hydraulic benchmarking study has been conducted for the prediction of pressure loss in lead-alloy cooled advanced nuclear energy systems (LACANES). The loop has several complex components that cannot be readily characterized with available pressure loss correlations. Among these components is the core, composed of a vessel, a barrel, heaters separated by complex spacers, and the plenum. Due to the complex shape of the core, its pressure loss is comparable to that of the rest of the loop. Detailed CFD simulations employing different CFD codes are used to determine the pressure loss, and it is found that the spacers contribute to nearly 90 percent of the total pressure loss. In the system codes, spacers are usually accounted for; however, due to the lack of correlations for the exact spacer geometry, the accuracy of models relies strongly on assumptions used for modeling spacers. CFD can be used to determine an appropriate correlation. However, application of CFD also requires careful choice of turbulence models and numerical meshes, which are selected based on extensive experience with liquid metal flow simulations for the KALLA lab. In this paper consistent results of CFX and Star-CD are obtained and compared to measured data. Measured data of the pressure loss of the core are obtained with a differential pressure transducer located between the core inlet and outlet at a flow rate of 13.57kg/s.

수치해석기법을 이용한 지오텍스타일 튜브의 거동분석 (Behavior of Geotextile Tube by Numerical Analysis)

  • 신은철;오영인;조인휘
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.385-392
    • /
    • 2003
  • Traditional forms of river and coastal structures have become very expensive to build and maintain, because of the shortage of natural rock. Geotextile tubes hydraulically or mechanically filled with dredged materials have been applied in hydraulic and coastal engineering in recent years(shore protection structure, detached breakwater, groins and jetty). Recently, new preliminary design criteria supported by model and prototype tests, and some stability analysis calculations have been studied. In this study, the numerical analysis was performed to investigate the behavior of geotextile tube with various properties of geotextile and hydraulic pumping conditions. Numerical analysis was executed to compare with the results from the large-scale field model tests, and also compared the results of 2-D plane strain analysis and 3-D FEM analysis. A geotextile tube was modeled using the commercial finite element analysis program ABAQUS and the one-quarter of tube was modeled. Behavior of geotextile tube during the hydraulic pumping procedure was analyzed by comparing the large-scale field model test and numerical analysis. The shape variation and maximum tube height between the numerical analysis results and large-scale filed test results are turned out to be a good agreement.

  • PDF

SIMULATED AP1000 RESPONSE TO DESIGN BASIS SMALL-BREAK LOCA EVENTS IN APEX-1000 TEST FACILITY

  • Wright, R.F.
    • Nuclear Engineering and Technology
    • /
    • 제39권4호
    • /
    • pp.287-298
    • /
    • 2007
  • As part of the $AP1000^{TM}$ pressurized water reactor design certification program, a series of integral systems tests of the nuclear steam supply system was performed at the APEX-1000 test facility at Oregon State University. These tests provided data necessary to validate Westinghouse safety analysis computer codes for AP1000 applications. In addition, the tests provided the opportunity to investigate the thermal-hydraulic phenomena expected to be important in AP1000 small-break loss of coolant accidents (SBLOCAs). The APEX-1000 facility is a 1/4-scale pressure and 1/4-scale height simulation of the AP1000 nuclear steam supply system and passive safety features. A series of eleven tests was performed in the APEX-1000 facility as part of a U.S. Department of Energy contract. In all, four SBLOCA tests representing a spectrum of break sizes and locations were simulated along with tests to study specific phenomena of interest. The focus of this paper is the SBLOCA tests. The key thermal-hydraulic phenomena simulated in the APEX-1000 tests, and the performance and interactions of the passive safety-related systems that can be investigated through the APEX-1000 facility, are emphasized. The APEX-1000 tests demonstrate that the AP1000 passive safety-related systems successfully combine to provide a continuous removal of core decay heat and the reactor core remains covered with considerable margin for all small-break LOCA events.

유압제어시스템 적용을 위한 ER 밸브의 내구성 평가 (Durability Evaluation of ER Fluids in Hydraulic Control Systems)

  • 김도태;장성철
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.100-105
    • /
    • 2007
  • Electro-rheological(ER) fluid and valve are fabricated and evaluated experimentally in its durability to utilize the hydraulic control systems for long term operation. The two-ports ER valve used in the experiment consist of twelve parallel multi-layer electrodes and provide a restriction to the passage of ER fluid because of the viscous pressure drop and a component induced by the electric field. The durability test of ER valve are performed by measuring the surface roughness of electrodes with variation of an electric field strength and test time(1000 or 1800min.). Also, the shear stress and shear rate are measured to evaluate the durability of ER fluid as function of time. After durability test, ER shear stress increases approximately proportional to the shear rate with applied electric field intensity, In the ER valve, the center line average height roughness(Ra) of copper electrode increases about 1.56 times and ten-point median height roughness(Rz) increases about 2.2 times after the durability test. An understanding of these durability is essential to predicting the service life of ER fluid and valves.

Turbine Performance Experiments for the Turbopump of a Liquid Rocket Engine

  • Lee, Hanggi;Shin, Juhyun;Jeong, Eunhwan;Choi, Changho
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.25-29
    • /
    • 2016
  • This paper highlights the performance of an impulse turbine which is a part of turbopump in a liquid rocket first stage engine. The turbopump, currently under development at Korea Aerospace Research Institute, has an impulse type turbine with 12 nozzles and a single rotor. The impulse turbine can archive high specific power with the low gas flow rates. The supersonic impulse turbine with a single rotor can make a simple structure. High-pressure gases are converted into the dynamic energy with flows through the 12 nozzles and drive the rotor to make the power for the pumps. The turbine test was performed in the high-pressured turbine test facility with air gas instead of burned gas. A hydraulic dynamometer was used to absorb the power from the turbine and control the rotational speed and torque. The test points were at several pressure ratios with 7 different rotational speeds. Results showed the efficiency was highest at the design pressure ratio. The efficiency was insensitive to the pressure ratio variation than the rotational speed. It was a typical characteristic in an impulse turbine.

강섬유 보강 숏크리트의 터널모형실험 및 수치해석적 검증 (A Tunnel Mock-up Test and Numerical Analysis on Steel Fiber Reinforced Shotcrete)

  • 유광호;정지성;박연준
    • 터널과지하공간
    • /
    • 제18권2호
    • /
    • pp.107-117
    • /
    • 2008
  • 본 논문은 터널의 지반과 지보재의 상호 거동을 규명하기 위해 터널의 1차 지보재인 강섬유 보강 숏크리트의 파괴 및 변형특성을 살펴보았다. 이를 위해 실제와 유사한 크기의 터널모형을 제작하여 실험하였다. 실험은 측압계수를 0.5와 1.0으로 설정하여 수행하였으며 11개의 유압실린더를 사용하여 하중을 재하하였다. 11개의 유압실린더는 측압을 효과적으로 모사하기 위해 천단부와 측벽부 두 그룹으로 나누어 조절하였다. 한편 숏크리트의 변형은 11개의 LVDT를 사용하여 측정하였다. 또한 각 실린더에서 가해지는 하중이 숏크리트에 분산되어 잘 전달되도록 뒤채움재를 사용하였다. 모형실험의 검증을 위해 3차원 수치해석을 실시하였다. 3차원 수치해석은 터널모형실험과 가능하면 같은 조건으로 해석하기 위하여 모형실험의 로드셀에서 얻어진 하중이력곡선이 수치해석 시에도 가능하면 동일하게 재현되도록 FISH routine을 별도로 작성하여 수행되었다.

금속재와 복합재 이종구조물로 된 압력용기의 설계이론 개발 (Development of a design theory of a pressure vessel with combined structure of the metal and the composite)

  • 이방업;김원훈;구송회;손영일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.61-65
    • /
    • 2006
  • 수십 msec의 단시간에 큰 추력을 발생시키는 임펄스모타의 무게를 가볍게 하기 위하여 금속재와 복합재를 조합하여 수만 psia의 초고압을 지탱하는 압력용기의 설계이론을 개발하였고, 탄소성 구조해석을 통하여 이론식의 타당성을 입증하였다. 임펄스모타의 연소관을 이론식으로 설계하고 제작하여 유압시험과 지상연소시험을 실시하였다. 실험결과의 파열압력은 설계식과 구조해석 결과로 예측한 값과 유사한 값을 보였다. 본 논문의 설계이론을 통하여 설계단계에서 가볍고도 충분한 안전율을 갖는 고압용기를 간단히 설계할 수 있게 되었다.

  • PDF