• Title/Summary/Keyword: Hydraulic Pressure Test

Search Result 483, Processing Time 0.025 seconds

Estimation from Field Tests of the Excavation Efficiency of an Improved Hydraulic Rock Splitting System (현장실험을 통한 개선된 수압암반절개시스템의 굴착 효율성 평가)

  • Park, Jong Oh;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.719-730
    • /
    • 2021
  • An improved packer and injection system was developed to improve the efficiency of excavation by hydraulic rock splitting by reducing vibration and noise. Field testing of the system found hydraulic fractures limited in expansion and extension due to the loss of injection pressure by leackage from the cracks, and then the single packer applied to injection hole allowed to produce a sufficient tensile displacement for rock excavation. Numerical analysis based on the field test data could explain the development of cracks in the field experiments.

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF

Experimental Study on Hydraulic Resistance of Sea Ground Considering Tidal Current Flow (왕복류 흐름을 고려한 지반의 수리저항성능 실험)

  • Kim, Young-Sang;Gang, Gyeong-O
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.118-125
    • /
    • 2011
  • Conventional erosion function apparatus (EFA) which has been used to measure the hydraulic resistance of soil was improved to consider direction change of the current flow. Using improved apparatus, hydraulic resistance capacities of the artificially composed clayey soil and sandy soil were compared. Test result shows that scour rates which were measured under the bi-directional flow were much higher than those measured under unidirectional flow for both type soils. Scour rate of sandy soil was higher than that of clayey soil. Velocity averaged scour rate of specimen which was consolidated under the relatively large consolidation pressure is higher than that of specimen which is consolidated under small consolidation pressure, which means scour problem under bidirectional flow may be more serious for the deep seabed ground.

Hydraulic Characteristics of Branching and Merging of Channels in Regenerative Cooling Passage in Liquid Rocket Combustors (채널의 분기 및 병합이 있는 액체로켓 연소기 재생냉각 유로에서의 수력학적 특성)

  • Kim, Hong-Jip;Kim, Seong-Ku;Choi, Hwan-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1087-1093
    • /
    • 2008
  • Regenerative cooling passage to guarantee the thermal survivability in high performance rocket engine combustors could have complex configurations of the branching/merging of channels and flow turning, etc. By applying the classical hydraulic coefficients which can be found in the literature according to the flow conditions, hydraulic characteristics in regenerative cooling passages can be obtained effectively through dividing the pressure loss into friction loss and local resistance loss. Satisfactory agreement has been obtained by comparing the present results with experimental measurement of water flow test. In addition, the present results were in good agreement with CFD results when the actual coolant, kerosene was used. Therefore, the application of the present method is expected to be useful to design regeneratively cooled combustors.

The effect of strain rate on the instability of sheet metal (변형율속도가 판재의 불안정에 미치는 영향)

  • 백남주;한규택
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.935-943
    • /
    • 1988
  • The forming limit diagram is assessed as a means of estimating the forming characteristics of sheet metal and is usually determined experimentally. The strain rates used in the determination are likely to be low. However, often in practice, the strain rates are much higher, so if forming limit diagram is determined at low rates, it may not be appropriate. This paper reconsiders the forming limit diagram for mild steel and aluminum sheet up to variation in strain rate from 10$^{-2}$ sec to 20/sec where its forming has been carried out under oil pressure using a hydraulic bulge test with circular and elliptical dies. To obtain higher strain rate, an impact bulge test had been employed with the same die sets as those used for a hydraulic bulge test. The results obtained are as follows: (1) As the strain rate increases, the fracture pressure increases and the polar height at fracture decreases. (2) Experiment has shown that, in the positive quadrant of the forming limit diagram, the diagram is lowered with increasing strain rate and the effect of strain rate changes according to strain paths and materials..

Relationship between In-situ Hydraulic Conductivity and Van Genuchten Parameters of Unsaturated Fractured Hornfels (불포화 균열 혼펠스의 현장 수리전도도와 반 게누텐 매개변수의 상관성)

  • Cheong, Jae-Yeol;Cho, HyunJin;Kim, Soo-Gin;Ok, Soonil;Kim, Kue-Young;Hamm, Se-Yeong
    • The Journal of Engineering Geology
    • /
    • v.30 no.2
    • /
    • pp.147-160
    • /
    • 2020
  • Unsaturated hydraulic conductivity of near-surface unconsolidated layers depends on the physical properties and water content of the unconsolidated layers. So far, many studies have been conducted on the unsaturated hydraulic conductivity of near-surface unconsolidated layers. However, researches on hydraulic conductivity of unsaturated fractured rocks have been relatively rare. In relation to the construction of a low/intermediate level radioactive waste surface-disposal facility, this study compared and analyzed van Genuchten parameters (α, n) in the laboratory and the hydraulic conductivity obtained in field tests for fractured hornfels at a radioactive-waste disposal site of Korea. The relationship between the field hydraulic conductivity and van Genuchten parameters using data from the ten depth intervals of three boreholes resulted in that the correlation coefficient (R) between the hydraulic conductivity and the van Genuchten parameter α was 0.7607, showing positive correlation whereas the R between the hydraulic conductivity and the van Genuchten shape-defining parameter n was -0.8720, showing negative correlation. Hence, this study confirmed the relationship between the field hydraulic conductivity and the van Genuchten unsaturated functions for the unsaturated fractured hornfels.

The Relation of Fracture Properties to Hydraulic Conductivity in Volcanic Rocks of the Northern Yosu Area (여수 북부지역 화산암의 단열특성과 수리전도도와의 관계)

  • 조성일;송무영;김경수;이은용
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.227-241
    • /
    • 1999
  • Groundwater flow in a fractured rock mass is related to the geometric characteristics of the fracture system. The objective of this study aims to analyze the probabilistic density function of fracture properties md their relations to the hydraulic conductivity in volcanic rocks of the northern Yosu area. Fracture characteristics were investigated by core logging and acoustic televiewer logging in four boreholes and the hydraulic conductivity was obtained from the constant pressure injection and fall-off tests. The 303 fractures were grouped into three sets by their orientation and three fracture types by the degree of opening in aperture. As a result of the study, the hydraulic conductivity in the test section intersected by open and semi-open fractures, conductive fractures, and set 1 fractures was very high, while closed fractures did rarely affect the hydraulic conductivity. It was recognized that the hydraulic conductivity in a fractured rock mass was preferentially affected by the aperture size of conductive fractures and fracture intersection frequency and size, secondly.

  • PDF

Correlation between the Distribution of Discontinuities and Groundwater Flow in Fractured Rock (온도검층과 수압시험을 통한 파쇄암반의 단열분포와 지하수 흐름 상관성 고찰)

  • Park, Seunghyuk;Chung, Il-Moon
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.505-513
    • /
    • 2016
  • The qualitative distribution of a fractured aquifer was characterized by electrical resistivity surveying as a part of basic groundwater investigation in Jangseong. The results were then used to choose sites for observation wells. The locations and distributions of permeable discontinuities were studied by analyses of temperature logs, a borehole image-processing system (BIPS), and hydraulic pressure testing using a double packer. The pressure test showed that the size of the discontinuities correlated with the Lugeon value and the results of the temperature log. The results show that temperature measurement is an effective method to identify permeable discontinuities, with the temperature difference correlating with the size of the aperture of the discontinuity.

Development of Performance Test Equipment for Easy-Hill Assist Valve (EHA 밸브 성능시험 장치 개발)

  • Jung, G.H.
    • Journal of Drive and Control
    • /
    • v.11 no.4
    • /
    • pp.61-67
    • /
    • 2014
  • When a manual transmission equipped car stops on an incline where the nose of the car is higher than the rear, hill-start control or hill-holder could prevent the vehicle from rolling backward as the car moves forward. The easy-hill assist valve consists of a check valve and a needle type ON/OFF solenoid valve connected in parallel; it is a hydraulic actuator that can maintain brake pressure using an electrical signal from the ECU. As the EHA valve is a safety-related component of the brake system, high reliability as well as superior dynamic performance is required for it to be applied in commercial vehicles. This paper presents the design of the EHA valve as a piece of equipment that can simulate the brake actuation pressure with a pressurizing piston. Following specific test standards, the experimental results validate the implemented functions of the test equipment, proving the test stand to be effective for the performance and endurance of the EHA valve.

Development of a Flow Rate Sensor Using 2-way Cartridge Valve (2-유로 카트리지 밸브를 이용한 유압용 유량 센서의 개발)

  • 홍예선;이정오
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2381-2389
    • /
    • 1993
  • In this paper the design and test results of a dynamic flow rate sensor was reported. This sensor comprises an 2-way cartridge valve as standard hydraulic component and a displacement sensor. Its working principle bases on the linear relationship between the flow rate and the piston displacement of 2-way cartridge valves under constant pressure drop. This principle is well known, however it is not easy to develop a flow rate sensor with the measurement range of 300 1/min, pressure loss of less than 8 bar at 300 1/min, maximum linearity error of less than $\pm$1% and the maximum rising time of 10 ms. This paper describes the design procedure of the flow rate sensor, the improvement procedure of static performance and test method and results of dynamic performance.