• Title/Summary/Keyword: Hydraulic Oil

Search Result 399, Processing Time 0.026 seconds

Design and Performance Evaluation of a Variable Control Type Fresh Corn Harvester (가변 제어형 식용 풋옥수수 수확기 설계 및 성능평가)

  • Jea Keun Woo;Il Su Choi;Young Keun Kim;Yong Choi;Duck Kyu Choi;Ho Seop Lee;Ji Tae Kim;Young Jun Park;Dong jae Kim
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.40-46
    • /
    • 2023
  • Fresh corn, one of the main food crops, must be harvested by hand. A harvest mechanization technology is required. In this study, a tractor-attached harvester was designed and manufactured to sequentially perform stem reaping, fresh corn detaching, and collecting. The(harvester was designed so that the main device could operate through a hydraulic pump and a generator could be operated through the tractor's PTO. Factor tests were conducted according to cultivars (Ilmichal, Super sweet corn) and working speed (0.12 m/s, 0.17, 0.22). After the factor test, detached corns ratio, collected corns ratio, and damaged corns ratio were analyzed and harvest performance was evaluated. Harvesting performance was good for super sweet corn. Considering operation efficiency, 0.22 m/s was judged to be an appropriate working speed. It was found that it took two hours to work an area of 10 a.

The Application of a Simplified Pullout Test for High-Strength Concrete (고강도 콘크리트에 대한 간이 인발시험법 적용)

  • Ko, Hune-Bum;Jeon, Doo-Jin;Lee, Min-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.5
    • /
    • pp.49-55
    • /
    • 2017
  • In the seventies, a number of researchers carried out experiments on pullout tests with prototype equipment, and the pullout test was certified as a reliable nondestructive testing(NDT) method for determining the strength of concrete. To estimate the strength of high-strength concrete, we propose a simplified pullout test that uses as a break-off bolt a standard 10mm bolt with a groove on the shaft, an insert nut, and a pullout instrument that includes a hydraulic oil pump without a load cell. To verify the advantages of the simplified pullout test(low cost, simplicity, and convenience), four wall specimens were tested with two levels of concrete strength, 30 MPa and 50 MPa, using a simplified pullout tester with a load cell. The pullout load and concrete compressive strength were measured every day until day 7, day 14, day 21 and day 28. It was found that the pullout load was very similar to the compressive strength. Therefore, we have verified that a simplified pullout test can be used to evaluate the in-place strength of high-strength concrete in structures. The prediction equation of the groove diameter of the break-off bolt(y) with the concrete strength(x) was derived as y=0.05x+3.79, with a coefficient of determination of 0.88 found through regression analysis.

Characteristics of organic pollutants in discharged industrial waste in Korea - Focuse on metallic and plastic manufacturing processes and wastewater treatment plants - (국내 사업장 폐기물 중 유기오염물질의 배출특성 연구 - 금속과 플라스틱 제조공정 및 폐수처리시설 중심으로 -)

  • Yeon, Jin-Mo;Kang, Young-Yeul;Kim, Woo-Il;Shin, Sun-Kyoung;Jeong, Seong-Kyeong;Cho, Yoon-A;Kim, Na;Kim, Min-Sun
    • Analytical Science and Technology
    • /
    • v.25 no.6
    • /
    • pp.421-428
    • /
    • 2012
  • In this study, PCDD/PCDFs, PAHs and PCBs in wastes from metal, plastic and wastewater treatment facilities were analyzed. The concentrations of PCDD/PCDFs ranged from 7.37~432.20 ng-TEQ/kg in fly ash, 0.51~855.01 ng-TEQ/kg in incinerated ash and 0.37~385.81 ng-TEQ/kg in dust. Dioxin content was lower, compared to data in foreign countries. PAHs concentration was in the range of 0.0075~2.9225 mg/kg for process sludge and 0.0035~1.6716 mg/kg for wastewater sludge, which satisfied all of the two standards (Nap, Ant, B(a)F:4/0.8, Phen, B(a)A:5/1, Flt:10/2.5, B(a)P:4.5/0.9) of the Marine Environment Management Act. PAHs concentration in process sludge and wastewater sludge were slightly lower than those abroad. According to the analysis of seven types of PCBs (in comparison with the first standard, 0.15 mg/kg), concentration was found in the range of 0.0~0.65 mg/kg, while PCB-52, PCB-101, PCB-138, PCB-153 and PCB-180 isomers were detected in excessive value in some machine oil and hydraulic fluid.

Follow-Up Survey Fire Truck Deterioration (소방자동차 노후화에 따른 고장 발생원인 추적조사 연구)

  • Lee, Jang-Won;Kim, Eui-Tae;Rie, Dong-Ho
    • Fire Science and Engineering
    • /
    • v.29 no.3
    • /
    • pp.59-64
    • /
    • 2015
  • This study analyzed results of the causes of failure in 1,022 fire trucks currently being used in South Korea (aerial ladder, aerial platform, pumper, and chemical fire trucks). The results show that 46% of aerial ladder trucks have defective in the elevator brake systems, 29% of aerial platform trucks have contamination in the hydraulic oil, 37% of pumpers have defective in the pneumatic cylinders of the air supply system, and 39% of chemical fire trucks have defective in the powder fire extinguishing systems. The principal reasons for malfunctions are deterioration of the apparatuses, and accumulated fatigue from repetitive use of certain components, such as pneumatic cylinders in the air supply system and wire rope jamming in rollers in the ladder apparatus. These manufacturing defects should be improved upon in the manufacturing process. As a result, the fire trucks, which are used for 5 years or more, need precise inspections in accordance with the Regulation on Fire Apparatus Maintenance. Fire apparatuses have a service life of 10 to 12 years or more. They need to be replaced or require life extension, and they should be kept in top shape with the best maintenance for public safety.

Analysis of inner parts in the disc cutters applied to the field tests (현장적용 디스크커터의 내부부품 분석)

  • Bae, Gyu-Jin;Choi, Soon-Wook;Chang, Soo-Ho;Lee, Gyu-Phil;Song, Bong-Chan;Kim, Kab-Boo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.4
    • /
    • pp.473-485
    • /
    • 2015
  • The problems for non-rotating of a disc cutter proceed from the faults in inner parts of the disc cutter such as the leak of hydraulic fluid, the intrusion of tunnel mucks and water, overloading, overheating, poor assembly and substandard material. The rotating of a disc cutter is an indicator to show that the inner parts of disc cutter is operable, although the rotational torque depends on the extent of the damage. Therefore, the key in the problems for non-rotating of disc cutter is to maintain that the tapered roller bearings are working properly. This study aims to investigate the inner parts disassembled from disc cutters applied to the field tests in order to help decision for reuse of the disc cutters. As results, surface finishing to remove the scratch on the load zone of the hubs is needed, with the intent to reuse a hub. And the investigation of lapping surface by optical microscope of floating seals and the contamination test of oil need to be performed for reuse of a disc cutter. Especially, the analysis results show that the floating seals play a key role in the normal operation of bearings. There is nothing significant to report in the rest parts such as bearing, shaft, seal retainers.

The Relation between Pullout Load and Compressive Strength of Ultra-High-Strength Concrete (초고강도 콘크리트의 인발하중과 압축강도와의 관계)

  • Ko, Hune-Beom;Kim, Ki-Tae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • The pullout test, a nondestructive testing(NDT), for pre-installed inserts is perhaps the most widely used technique to estimate the in-situ compressive strength of concrete. It measures the force needed to pullout a standardized metal insert embedded into concrete members. The pullout test was certified by the American Society for Testing and Materials(ASTM) and Canadian Standards Association(CSA) as a reliable method for determining the strength of concrete in concrete structures under construction. To easily estimate the strength of ultra-high-strength concrete, a simplified pullout tester, primarily composed of a standard 12mm bolt with a groove on the shaft as a break-off bolt, an insert nut, and a hydraulic oil pump without a load cell, was proposed. Four wall and two slab specimens were tested for two levels of concrete strength, 80MPa and 100MPa, using a simplified pullout tester with a load cell to verify the advantages of the pullout test and simplified pullout test. The compressive strength of concrete, pullout load, and the rupture of the break-off bolt were measured 11 times, day 1 to 7, 14, 21, 28, and 90. The correlation of the pullout load and the compressive strength of each specimen show a higher degree of reliability. Therefore, a simplified pullout test can be used to evaluate the in-place strength of ultra-high-strength concrete in structures. The prediction equation for the groove diameter of the break-off bolt(y) with the concrete strength(x) was proposed as y=0.0184x+5.4. The results described in this research confirm the simplified pullout's utility and potential for low cost, simplicity, and convenience.

Sequential Use of COMSOL Multiphysics® and PyLith for Poroelastic Modeling of Fluid Injection and Induced Earthquakes (COMSOL Multiphysics®와 PyLith의 순차 적용을 통한 지중 유체 주입과 유발지진 공탄성 수치 모사 기법 연구)

  • Jang, Chan-Hee;Kim, Hyun Na;So, Byung-Dal
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.643-659
    • /
    • 2022
  • Geologic sequestration technologies such as CCS (carbon capture and storage), EGS (enhanced geothermal systems), and EOR (enhanced oil recovery) have been widely implemented in recent years, prompting evaluation of the mechanical stability of storage sites. As fluid injection can stimulate mechanical instability in storage layers by perturbing the stress state and pore pressure, poroelastic models considering various injection scenarios are required. In this study, we calculate the pore pressure, stress distribution, and vertical displacement along a surface using commercial finite element software (COMSOL); fault slips are subsequently simulated using PyLith, an open-source finite element software. The displacement fields, are obtained from PyLith is transferred back to COMSOL to determine changes in coseismic stresses and surface displacements. Our sequential use of COMSOL-PyLith-COMSOL for poroelastic modeling of fluid-injection and induced-earthquakes reveals large variations of pore pressure, vertical displacement, and Coulomb failure stress change during injection periods. On the other hand, the residual stress diffuses into the remote field after injection stops. This flow pattern suggests the necessity of numerical modeling and long-term monitoring, even after injection has stopped. We found that the time at which the Coulomb failure stress reaches the critical point greatly varies with the hydraulic and poroelastic properties (e.g., permeability and Biot-Willis coefficient) of the fault and injection layer. We suggest that an understanding of the detailed physical properties of the surrounding layer is important in selecting the injection site. Our numerical results showing the surface displacement and deviatoric stress distribution with different amounts of fault slip highlight the need to test more variable fault slip scenarios.

Dynamic Response of Tension Leg Platform (Tension Leg Platform의 동적응답에 관한 연구)

  • Yeo, Woon Kwang;Pyun, Chong Kun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 1985
  • The tension leg platform (TLP) is a kind of compliant structures, and is also a type of moored stable platform with a buoyancy exceeding the weight because of having tensioned vertical anchor cables. In this paper, among the various kinds of tension leg structures, Deep Oil Technology (DOT) TLP was analyzed because it has large-displacement portions of the immersed surface such as vertical corner pontoons and small-diameter elongated members such as cross-bracing. It also has results of hydraulic model tests, comparable with theorectical analysis. Because of the vertical axes of symmetry in the three vertical buoyant legs and because there are no larger horizontal buoyant members between these three vertical members, it was decided to develop a numerical algorithm which would predict the dynamic response of the DOT TLP using the previously developed numerical algorithm Floating Vessel Response Simulation (FVRS) for vertically axisymmetric bodies of revolution. In addition, a linearized hydroelastic Morison equation subroutine would be developed to account for the hydrodynamic pressure forces on the small member cross bracing. Interaction between the large buoyant members or small member cross bracings is considered to be negligible and is not included in the analysis. The dynamic response of the DOT TLP in the surge mode is compared with the results of the TLP algorithm for various combinations of diffraction and Morison forces and moments. The results which include the Morison equation are better than the results for diffraction only. This is because the vertically axisymmetric buoyant members are only marginally large enough to consider diffractions effects. The prototype TLP results are expected to be more inertially dominated.

  • PDF

Recent Progress in Air-Conditioning and Refrigeration Research: A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2008 (설비공학 분야의 최근 연구 동향: 2008년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Choi, Chang-Ho;Lee, Dae-Young;Kim, Seo-Young;Kwon, Yong-Il;Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.12
    • /
    • pp.715-732
    • /
    • 2009
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigeration Engineering during 2008. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends in thermal and fluid engineering have been surveyed in the categories of general fluid flow, fluid machinery and piping, new and renewable energy, and fire. Well-developed CFD technologies were widely applied in developing facilities and their systems. New research topics include fire, fuel cell, and solar energy. Research was mainly focused on flow distribution and optimization in the fields of fluid machinery and piping. Topics related to the development of fans and compressors had been popular, but were no longer investigated widely. Research papers on micro heat exchangers using nanofluids and micro pumps were also not presented during this period. There were some studies on thermal reliability and performance in the fields of new and renewable energy. Numerical simulations of smoke ventilation and the spread of fire were the main topics in the field of fire. (2) Research works on heat transfer presented in 2008 have been reviewed in the categories of heat transfer characteristics, industrial heat exchangers, and ground heat exchangers. Research on heat transfer characteristics included thermal transport in cryogenic vessels, dish solar collectors, radiative thermal reflectors, variable conductance heat pipes, and flow condensation and evaporation of refrigerants. In the area of industrial heat exchangers, examined are research on micro-channel plate heat exchangers, liquid cooled cold plates, fin-tube heat exchangers, and frost behavior of heat exchanger fins. Measurements on ground thermal conductivity and on the thermal diffusion characteristics of ground heat exchangers were reported. (3) In the field of refrigeration, many studies were presented on simultaneous heating and cooling heat pump systems. Switching between various operation modes and optimizing the refrigerant charge were considered in this research. Studies of heat pump systems using unutilized energy sources such as sewage water and river water were reported. Evaporative cooling was studied both theoretically and experimentally as a potential alternative to the conventional methods. (4) Research papers on building facilities have been reviewed and divided into studies on heat and cold sources, air conditioning and air cleaning, ventilation, automatic control of heat sources with piping systems, and sound reduction in hydraulic turbine dynamo rooms. In particular, considered were efficient and effective uses of energy resulting in reduced environmental pollution and operating costs. (5) In the field of building environments, many studies focused on health and comfort. Ventilation. system performance was considered to be important in improving indoor air conditions. Due to high oil prices, various tests were planned to examine building energy consumption and to cut life cycle costs.