• Title/Summary/Keyword: Hydraulic Model test

Search Result 555, Processing Time 0.024 seconds

Stability Analysis of Green Revetment Media Using Hydraulic Model (수리모형을 이용한 호안녹화기반재의 수리적 안정성 분석)

  • Kwon, Hyo Jin;Kim, Sung Hee;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.4
    • /
    • pp.15-26
    • /
    • 2013
  • In recent years, river maintenance projects using natural methods have been continuously implemented in urban areas and methods emphasizing ecology are being developed and constructed in revetment areas. However, there is insufficient technical review on the hydraulic stability of those revetment methods during the event of flood. Therefore, a hydraulic analysis is necessary for the stream where revetments are applied. This study was conducted to develop an objective test method for the hydraulic stability of green revetment media. For this purpose, hydraulic model tests were performed for the green base materials for revetments. Tests were conducted using experimental devices for the hydraulic model which were installed to simulate the rapid current during the flood. Loss of soil by the hydraulic condition was compared and analyzed with that of dry green revetment media, and the evaluations were made on the corrosion resistance, tractive force, and contractile force. Test results showed that green revetment media had higher corrosion resistance in non-vegetation condition compared to dry green revetment media, and the loss of base materials by the rooting of vegetation showed significant reduction by the vegetation. In addition, results of the allowable tractive force of the base material indicated it is relatively stable in vegetation condition but scouring can occur in non-vegetation condition. Therefore, the development of vegetation in revetment areas is anticipated to be effective for the stability of revetment areas by reducing external forces interacting with the corrosion resistance and stream bank. The green revetment media in expected to contribute to the stability of revetment areas.

Contribution of thermal-hydraulic validation tests to the standard design approval of SMART

  • Park, Hyun-Sik;Kwon, Tae-Soon;Moon, Sang-Ki;Cho, Seok;Euh, Dong-Jin;Yi, Sung-Jae
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1537-1546
    • /
    • 2017
  • Many thermal-hydraulic tests have been conducted at the Korea Atomic Energy Research Institute for verification of the SMART (System-integrated Modular Advanced ReacTor) design, the standard design approval of which was issued by the Korean regulatory body. In this paper, the contributions of these tests to the standard design approval of SMART are discussed. First, an integral effect test facility named VISTA-ITL (Experimental Verification by Integral Simulation of Transients and Accidents-Integral Test Loop) has been utilized to assess the TASS/SMR-S (Transient and Set-point Simulation/Small and Medium) safety analysis code and confirm its conservatism, to support standard design approval, and to construct a database for the SMART design optimization. In addition, many separate effect tests have been performed. The reactor internal flow test has been conducted using the SCOP (SMART COre flow distribution and Pressure drop test) facility to evaluate the reactor internal flow and pressure distributions. An ECC (Emergency Core Coolant) performance test has been carried out using the SWAT (SMART ECC Water Asymmetric Two-phase choking test) facility to evaluate the safety injection performance and to validate the thermal-hydraulic model used in the safety analysis code. The Freon CHF (Critical Heat Flux) test has been performed using the FTHEL (Freon Thermal Hydraulic Experimental Loop) facility to construct a database from the $5{\times}5$ rod bundle Freon CHF tests and to evaluate the DNBR (Departure from Nucleate Boiling Ratio) model in the safety analysis and core design codes. These test results were used for standard design approval of SMART to verify its design bases, design tools, and analysis methodology.

Evaluation of plastic flow curve of pure titanium sheet using hydraulic bulge test (유압벌지실험을 이용한 순 티탄늄 판재의 소성유동곡선 평가(제2보))

  • Kim, Young-Suk;Kim, Jin-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.718-725
    • /
    • 2016
  • In this study, the plastic flow curve of commercially pure titanium sheet (CP Ti) actively used in the plate heat exchanger etc., was evaluated. The plastic flow curve known as hardening curve is a key factor needed in conducting finite element analyses (FEA) for the forming process of a sheet material. A hydraulic bulge test was performed on the CP Ti sheet and the strain in this test was measured using the DIC method and ARAMIS system. The measured true stress-true strain curve from the hydraulic bulge test (HBT) was compared with that from the tensile test. The measured true stress-true strain curve from the hydraulic bulge test showed stable plastic flow curve over the strain range of 0.7 which cannot be obtained in the case of the uniaxial tensile test. The measured true stress-true strain curve from the hydraulic bulge test can be fitted well by the hardening equation known as the Kim-Tuan model.

A Study on the Application Method of Artificial Injection Test according to the Hydraulic Conductivity of Aquifer (대수층 수리지질특성에 따른 인공함양시험 적용 방법에 관한 연구)

  • Chae, Dong-Seok;Choi, Jin-O;Jeong, Hyeon-Cheol;Kim, Chang-Yong
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.589-601
    • /
    • 2021
  • Artificial recharge technology is a method for solving problems such as groundwater level drop and ground subsidence caused by groundwater withdrawal. This study investigated the applicability of using the hydraulic conductivity of an aquifer to predict injection test results for aquifer restoration. Pumping and injection tests were performed under the same conditions as those for the artificial injection facility located in Icheon, Gyeonggi-do. The hydraulic conductivity of the aquifer, which plays a decisive role in restoring the groundwater level, was derived from the pumping test. A numerical model of a simplified on-site aquifer was constructed, and a transient analysis was applied with the same conditions as the pumping test. The correlation between the measured and the resulting model values is strong (R2 = 0.78). The injection test was performed in a sedimentary layer composed of silt sand and clay sand. From the results of the injection test, an empirical formula was derived using Theim's formula, which is a common well analysis solution to determine the parameters of the aquifer from time-level data. The model values from the empirical formula have a high degree of correlation (R2 = 0.99) with measured values. Under specific conditions, for areas where it is difficult to conduct an injection test, the formula from this study, which relies on the hydraulic conductivity of the aquifer determined through the pumping test, may be used to predict reliable injection rates for groundwater restoration.

Development and Performance Test of the KSLV-I KM Case (KSLV-I KM 케이스 개발 및 성능 시험)

  • Kil, Gyoung-Sub;Lee, Mu-Guen;Lee, Kyung-Won;Cho, In-Hyun
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.188-196
    • /
    • 2007
  • A composite case was designed to satisfy the required condition of KSLV-I kick motor system. we performed the structure and combustion tests to insure the reliability of the case before the production of the flight model. The hydraulic, vacuum and non destruction testes as the structure test were carried out to confirm the strength of the components of the case and the characteristics of the thermal and structure were investigated through the ground combustion test.

  • PDF

Hydraulic scale model test on design of groin to protect coast against erosion (방조제 전면 해안침식 방지를 위한 수제공 설치 방안 수리모형실험)

  • Park, Young-Jin;Jang, Jeong-Ryeol;Jo, Jin-Hoon;Kwun, Soon-Kuk
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.455-458
    • /
    • 2003
  • A hydraulic scale model test with movable bed was performed to obtain design data for groins to protect the coast in front of the Sang-ri seadike in Sukmodo, located in the Han-river estuary area. The vertical scale of the model is 1/100 and the horizontal scale 1/250 according to Froude similitude. The result of test for original coast and groins showed that the coast in front of the Sang-ri seadike was eroded by tidal current. Three alternatives for the planning of new groins were tested. It is concluded that the alternative B-3 test scheme was the best plan to protect the coast among others.

  • PDF

A Study of Life Characteristic of Hydraulic Hose Assembly by Adopting Complex Accelerated Model with Acceleration Factors of Pressure and Temperature (압력과 온도 복합가속모형을 적용한 유압호스 조립체 수명특성 연구)

  • Lee, Gi-Chun;Kim, Hyoung-Eui;Cho, You-Hee;Kim, Jae-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1697-1703
    • /
    • 2010
  • Hydraulic hoses are used as pipelines for transferring power from hydraulic systems in various machineries such as construction equipments, automobiles, and aircraft. Hydraulic hoses protect the system from vibration or impacts, and they are being used to transfer energy in all segments of the industry. In order to protect the system from various external environmental conditions, hydraulic hose assemblies must be able to withstand a wide range of temperatures and pressures, as well as variations in other factors. In previous studies, an acceleration model for the hydraulic hose assembly was developed by taking into account only one of the acceleration factors (temperature or pressure). Therefore, the objective of this study is to develop a comprehensive acceleration model that takes both temperature and pressure into consideration.

Development of a special thermal-hydraulic component model for the core makeup tank

  • Kim, Min Gi;Wisudhaputra, Adnan;Lee, Jong-Hyuk;Kim, Kyungdoo;Park, Hyun-Sik;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1890-1901
    • /
    • 2022
  • We have assessed the applicability of the thermal-hydraulic system analysis code, SPACE, to a small modular reactor called SMART. For the assessment, the experimental data from a scale-down integral-test facility, SMART-ITL, were used. It was conformed that the SPACE code unrealistically calculates the safety injection flow rate through the CMT and SIT during a small-break loss-of-coolant experiment. This unrealistic behavior was due to the overprediction of interfacial heat transfer at the steam-water interface in a vertically stratified flow in the tanks. In this study, a special thermal-hydraulic component model has been developed to realistically calculate the interfacial heat transfer when a strong non-equilibrium two-phase flow is formed in the CMT or SIT. Additionally, we developed a special heat structure model, which analytically calculates the heat transfer from the hot steam to the cold tank wall. The combination of two models for the tank are called the special component model. We assessed it using the SMART-ITL passive safety injection system (PSIS) test data. The results showed that the special component model well predicts the transient behaviors of the CMT and SIT.

An Analytical Investigation of a Hydraulic Clutch System of Powershift Transmission (파워시프트 변속기 유압클러치시스템의 해석적 연구)

  • Lee, J.C.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This study presents an analytical model of hydraulic clutch system of a power shift transmission to analyze pressure modulation characteristics. A typical hydraulic clutch system was modeled by using AMESim in which the parameters of major components were measured for simulation. Test apparatus was established using the components of power shift and power shuttle clutches with instrumental equipment. The results of simulation and experiment were so close that the proposed analytical model in this study was validated. However the cylinder model analogized clutch dynamics need to be improved in future study. The effects of parameters of orifice diameter, accumulator stroke and oil temperature on pressure modulation were analyzed respectively. The results of parameter sensitivity analysis show that modulation time and set pressure can be easily adjusted by changing parameter values. It is also found that the hydraulic clutch system used in this study is so susceptible to oil temperature that cooling equipment is necessary.

  • PDF

Estimation of Hydraulic States Caused by Gate Expansion in Asan Bay (아산만 방조제 배수갑문 확장사업에 따른 주변해역 수리현상 변화 검토)

  • Park, Byong-Jun;Lee, Sang-Hwa
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.2
    • /
    • pp.184-193
    • /
    • 2008
  • The gate expansion was planed to increase discharge capacity of gate structure at sea dike in Asan Bay. So it was estimated for changing of hydraulic states in Pyeongteak Harbor Zone caused by gate expansion, using Delft3D, FLOW-3D and hydraulic physical scale model testing. In result, the influence of gate expansion was indicated to be weak.