• Title/Summary/Keyword: Hydraulic Model Experiments

Search Result 326, Processing Time 0.026 seconds

A Study on the Braking Characteristics of Control Methods for ABS mounted Vehicle (ABS 장착 자동차의 제어방식에 따른 제동특성에 관한 연구)

  • Choi, Jong-Hwan;Kim, Wung-Su;Yang, Soon-Yong;Park, Sung-Tae;Lee, Jin-Kul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.203-211
    • /
    • 2002
  • ABS (Anti-lock Braking System) is a safety device for preventing wheel locking in a sudden braking. It consists of hydraulic modulator, ECU(Electronic Control Unit) and angular velocity sensors. Its control methods are classified into three types; deceleration control, slip ratio control and deceleration/acceleration control. In this paper, ABS mounted vehicle is mathematically modeled and the proposed model is verified by actual cars experiments, and the braking characteristics of the control methods with pulse width modulation are compared and analyzed through computer simulations.

Hydraulic Experiments on Reflection of Regular Waves due to Rectangular Submerged Breakwaters (사각형형상 수중방파제의 반사에 관한 수리실험)

  • Cho, Yong-Sik;Lee, Jong-In;Kim, Young-Taek
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.563-573
    • /
    • 2002
  • In this study, reflection of water waves over a train of rectangular submerged breakwaters is experimentally investigated. Measured reflection coefficients of regular waves are compared with predicted coefficients obtained from the eigenfunction expansion method. Although measured coefficients are slightly smaller than predicted ones, the overall agreement is very good.

Investigation of thermal hydraulic behavior of the High Temperature Test Facility's lower plenum via large eddy simulation

  • Hyeongi Moon ;Sujong Yoon;Mauricio Tano-Retamale ;Aaron Epiney ;Minseop Song;Jae-Ho Jeong
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3874-3897
    • /
    • 2023
  • A high-fidelity computational fluid dynamics (CFD) analysis was performed using the Large Eddy Simulation (LES) model for the lower plenum of the High-Temperature Test Facility (HTTF), a ¼ scale test facility of the modular high temperature gas-cooled reactor (MHTGR) managed by Oregon State University. In most next-generation nuclear reactors, thermal stress due to thermal striping is one of the risks to be curiously considered. This is also true for HTGRs, especially since the exhaust helium gas temperature is high. In order to evaluate these risks and performance, organizations in the United States led by the OECD NEA are conducting a thermal hydraulic code benchmark for HTGR, and the test facility used for this benchmark is HTTF. HTTF can perform experiments in both normal and accident situations and provide high-quality experimental data. However, it is difficult to provide sufficient data for benchmarking through experiments, and there is a problem with the reliability of CFD analysis results based on Reynolds-averaged Navier-Stokes to analyze thermal hydraulic behavior without verification. To solve this problem, high-fidelity 3-D CFD analysis was performed using the LES model for HTTF. It was also verified that the LES model can properly simulate this jet mixing phenomenon via a unit cell test that provides experimental information. As a result of CFD analysis, the lower the dependency of the sub-grid scale model, the closer to the actual analysis result. In the case of unit cell test CFD analysis and HTTF CFD analysis, the volume-averaged sub-grid scale model dependency was calculated to be 13.0% and 9.16%, respectively. As a result of HTTF analysis, quantitative data of the fluid inside the HTTF lower plenum was provided in this paper. As a result of qualitative analysis, the temperature was highest at the center of the lower plenum, while the temperature fluctuation was highest near the edge of the lower plenum wall. The power spectral density of temperature was analyzed via fast Fourier transform (FFT) for specific points on the center and side of the lower plenum. FFT results did not reveal specific frequency-dominant temperature fluctuations in the center part. It was confirmed that the temperature power spectral density (PSD) at the top increased from the center to the wake. The vortex was visualized using the well-known scalar Q-criterion, and as a result, the closer to the outlet duct, the greater the influence of the mainstream, so that the inflow jet vortex was dissipated and mixed at the top of the lower plenum. Additionally, FFT analysis was performed on the support structure near the corner of the lower plenum with large temperature fluctuations, and as a result, it was confirmed that the temperature fluctuation of the flow did not have a significant effect near the corner wall. In addition, the vortices generated from the lower plenum to the outlet duct were identified in this paper. It is considered that the quantitative and qualitative results presented in this paper will serve as reference data for the benchmark.

A study on the flow characteristics around a suction pipe of circulation water pump in thermal power plant (화력발전소 순환수펌프 흡입관 주위에서의 유동특성에 관한 연구)

  • Choi, Sung-Tyong;Ahn, Jung-Hyeon;Moon, Seung-Jae;Lee, Jae-Heon;Yoo, Ho-Sun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.201-204
    • /
    • 2008
  • Vortex and swirl occurring in a pump suction intake sump normally reduce the performance and disturb the safe operation of the circulation water pump in thermal power plants. This paper presents a case study of one particular intake sump design via a CFD analysis and a hydraulic model testing. The physical experiments and numerical analysis were performed under two flow and three level variation conditions. The vortex patterns around the pump suction pipe have been predicted by a commercial CFD code with the k-${\varepsilon}$ model. The model tests were conducted on a 1/10 model for a practical intake sump. The location, number and general pattern of the free surface vortex and submerged vortex predicted by CFD simulation were found to be a good agreement with those observed in the model testing.

  • PDF

Design Parameter Optimization of Rope Brake System far Elevator (엘리베이터용 로프 브레이크 시스템의 설계변수 최적화에 관한 연구)

  • 윤영환;최명진
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.6
    • /
    • pp.85-94
    • /
    • 2001
  • Hydraulic systems of rope brake for elevators are modelled to evaluate design parameters such as cylinder pressure, pis-ton displacement, accumulator capacity, and so on. To assure the results, experiments were performed. The analysis results agree well with the experimental results. The scheme in this study is expected to be utilized in the design of rope brake system for elevators to get design parameters and to improve the safety.

  • PDF

Pressure control of hydraulic servo system using proportional control valve (비례전자밸브를 사용한 유압서보계의 압력제어)

  • Yang, Kyong-Uk;Oh, In-Ho;Lee, Ill-Yeong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1229-1240
    • /
    • 1997
  • The purpose of this study is to build up control scheme that promptly control pressure in a hydraulic cylinder having comparatively small control volume, using a PCV (proportional control valve) and a digital computer. Object pressure control system has the character to be unstable easily, because the displacement-flow gain of the PCV is too large considering the small volume of the hydraulic cylinder and the time delay of response of the PCV is comparatively long. Considering the above-mentioned characteristics of the object pressure control system, in this study, control system is designed with two degree of freedom control scheme that is composed by adding a feed-forward control path to I-PDD$^{2}$ control system, and a reference model is used on the decision of control parameters. And through some experiments on the control system with FF-I-PDD$^{2}$ controller, the validity of this control method has been confirmed.

Static and Dynamic Characteristics of Electro - hydraulic Proportional Throttle Control Valve (전자 유압식 비례 교축 제어 밸브의 특성)

  • 오인호;이일영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.4
    • /
    • pp.87-99
    • /
    • 1993
  • Nowadays, the cartridge valve can be controlled proportionally in remote place by adopting proportional solenoid and it becomes widely used as control component in hydraulic systems. Especially, multi stage proportional valve is attractive because it consumes less input power though its characteristics might slightly be defected. But, the system parameter should be carefully chosen to obtain optimistic characteristics. This study concerning three stage proportional throttle control valve is purposed to examine the influences of paameters to the dynamic characteristics. The typical transient and frequency responses of proportional throttle control valve were inspected through the experiments and compared to those derived from the theoritical analyses. And it was confirmed that the analyses are appropriate. Then the influences of various system parameters to the dynamic characteristics were examined by means of simulations. For the analyses, the basic equations derived from lumped model were linearized and the linearized equations were transformed to the transfer functions between inputs and outputs. Then the transient responses and frequency responses were obtained from transfer functions. 1. It is appropriate to estimate the dynamic characteristics of valve which has relatively sophisticated structure by means of system analyses using linearized equations. 2. Though the valve has two pilot stages, fairly good characteristics can be obtained by carefully choosing system parameters. 3. Main valve very quickly follows the movement of second pilot valve when the parameters of main valve(the oil supply passage and discharge passage fpr second pilot valve) are appropriately chosen.

  • PDF

Propagation Characteristics of Pressure Pulse of Unsteady Flow in n Hydraulic Pipeline (유압관로에서 비정상유동의 압력전파특성)

  • Yu, Yeong-Tae;Na, Gi-Dae;Kim, Ji-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • Flow of fluid has been studied in various fields of fluid engineering. To hydraulic engineers, the unsteady flow such as pulsation and liquid hammering in pipes has been considered as a serious trouble. So we are supposed to approach the formalized mathematical model by using more exact momentum equation for fluid transmission lines. Most of recent studies fur pipe line have been studied without considerations of variation of viscosity and temperature, which are the main factors of pressure loss causing the friction of fluid inside pipe line. Frequency response experiments are carried out with use of a rotary sinusoidal flow generator to investigate wave equation take into account viscosity and temperature. But we observed that measured value of gains are reduced as temperature increased. And it was respectively observed that the measured value of gains are reduced and line width of gain is broadened out, when temperature was high in the same condition. As we confessed, pressure loss and phase delay are closely related with the length, diameter and temperature of pipe line. In addition, they are the most important factors, when we decide the momentum energy of working fluid.

Hydrodynamics and parametric study of an activated sludge process using residence time distribution technique

  • Sarkar, Metali;Sangal, Vikas K.;Bhunia, Haripada
    • Environmental Engineering Research
    • /
    • v.25 no.3
    • /
    • pp.400-408
    • /
    • 2020
  • Hydrodynamic study of Activated Sludge Process (ASP) is important to optimize the reactor performance and detect anomalies in the system. Residence time distribution (RTD) study has been performed using LiCl as tracer on a pilot scale aeration tank (AT) and ASP, treating the pulp and paper mill effluent. The hydraulic performance and treatment efficiency of the AT and ASP at different operating parameters like residence time, recycle rate was investigated. Flow anomalies were identified and based on the experimental data empirical models was suggested to interpret the hydrodynamics of the reactors using compartment modelling technique. The analysis of the RTD curves and the compartment models indicated increase in back-mixing ratio as the mean hydraulic retention time (MHRT) of the tank was increased. Bypassing stream was observed at lower MHRT. The fraction of dead zone in the tank increased by approximate 20-25% with increase in recycle rate. The fraction of the stagnant zone was found well below 5% for all performed experiments, which was under experimental error. The substrate removal of 91% for Chemical oxygen demand and 96% for Biochemical oxygen demand were observed for the ASP working at a hydraulic mean residence time 39 h MRT with a 20% recycling of activated sludge.