• 제목/요약/키워드: Hydraulic Force

검색결과 676건 처리시간 0.025초

On the Instantaneous and Average Piston Friction of Swash Plate Type Hydraulic Axial Piston Machines

  • Jeong, Heon-Sul;Kim, Hyoung-Eui
    • Journal of Mechanical Science and Technology
    • /
    • 제18권10호
    • /
    • pp.1700-1711
    • /
    • 2004
  • Piston friction is one of the important but complicated sources of energy loss of a hydraulic axial piston machine. In this paper, two formulas are derived for estimating instantaneous piston friction force and average piston friction moment loss. The derived formula can be applicable for piston guides with or without bushing as well as for axial piston machines of motoring and pumping operations. Through the formula derivation, a typical curve shape of friction force found from several experimental measurements during one revolution of a machine is clearly explained in this paper that it is mainly due to the equivalent friction coefficient dependent on its angular position. Stribeck curve effect can easily be incorporated into the formula by replacing outer and inner friction coefficients at both edges of a piston with the coefficient given by Manring (1999) considering mixed/boundary lubrication effects. Novel feature of the derived formula is that it is represented only by physical dimensions of a machine, hence it allows to estimate the piston friction force and loss moment of a machine without hardworking experimental test.

자동차 제동장치의 답력특성에 관한 연구 (A study on the characteristics of automotive brake pedal force)

  • 김형대;임윤철
    • 오토저널
    • /
    • 제15권2호
    • /
    • pp.64-75
    • /
    • 1993
  • In this study, the function of a hydraulic brake system with a vacuum booster is systematically analyzed according to the mutual relations which follow : - the brake pedal force vs. booster cylinder input force - the booster output force vs. master cylinder input force - the hydraulic line pressure vs. braking deceleration. A computer program is developed based on the theory which is able to predict and analyze the pedal force characteristics at the beginning of the initial stage of brake system design. Analytical results show good agreement with the experimental vehicle test.

  • PDF

QFT를 이용한 전기유압 하이브리드 부하 시뮬레이터의 능동 힘제어 (Active Force Control of Electro-Hydraulic Hybrid Load Simulator using Quantitative Feedback Theory)

  • 윤주현;안경관;딩쾅청;조우근
    • 한국정밀공학회지
    • /
    • 제26권2호
    • /
    • pp.45-53
    • /
    • 2009
  • Today, reduction of $CO_2$ exhaustion gas for global-warming prevention becomes important issues in all industrial fields. Hydraulic systems have been widely used in industrial applications due to high power density and so on. However hydraulic pump is always being operated by engine or electric motor in the conventional hydraulic system. Therefore most of the conventional hydraulic system is not efficient system. Recently, an electro-hydraulic hybrid system, which combines electric and hydraulic technology in a compact unit, can be adapted to a wide variety of force, speed and torque requirements. In the electro-hydraulic hybrid system, hydraulic pump is operated by electric motor only when hydraulic power is needed. Therefore the electro-hydraulic system can reduce the energy consumption drastically when compared to the conventional hydraulic systems. This paper presents a new kind of hydraulic load simulator which is composed of electro-hydraulic hybrid system. Disturbances in the real working condition make the control performance decrease or go bad. QFT controller is designed to eliminate or reduce the disturbance and improve the control performance of the electro-hydraulic load simulator. Experimental results show that the proposed controller is verified to apply for electro-hydraulic hybrid system with varied external disturbances.

파워스티어링용 유압펌프의 일체형 풀리 개발 (Development of Monolith Type Driving Pulley of Power Steering Hydraulic Pump)

  • 이춘태
    • 유공압시스템학회논문집
    • /
    • 제7권4호
    • /
    • pp.9-14
    • /
    • 2010
  • Most power steering systems work by using a hydraulic system to turn the vehicle's wheels. The pressure is usually provided by a hydraulic pump driven by the vehicle's engine. A double-acting hydraulic cylinder applies a force to the steering gear, which in turn applies a torque to the steering axis of the road wheels. The flow to the cylinder is controlled by valves operated by the steering wheel ; the more torque the driver applies to the steering wheel and the shaft it is attached to, the more fluid the valves allow through to the cylinder, and so the more force is applied to steer the wheels in the appropriate direction. Since the pumps employed are of the positive displacement type, the flow rate they deliver is directly proportional to the speed of the engine. And for a long time, the type of hydraulic pump pulley was boss welding type. But recently, monolith type driving pulley is widely used. Therefore in this paper we studied the safety of monolith type driving pulley to the extracting force and endurance by FEM analysis and experiments.

  • PDF

공기 유압식 브레이크 라인 파손 사례 및 파손 분석 연구 (A Case Study on Failure and Analysis of Air Over Hydraulic Brake Line)

  • 박정만;박종진
    • 자동차안전학회지
    • /
    • 제12권2호
    • /
    • pp.47-55
    • /
    • 2020
  • In this case study, the brake line failure of air over hydraulic(AOH) brake system is described. AOH brake system is applied to commercial vehicles between 5 to 8 tons. It consists of a hydraulic system using compressed air and operates the air master to form hydraulic pressure to transfer braking power to the wheels. When the brake lines of the system applied to vehicles with high load capacity are damaged, the braking force of one shaft is lost, and the braking distance increases rapidly, leading to a big accident. Failure of the brake line occurs due to various causes such as road surface fragmentation, corrosion of the line, and aged deterioration of air brake hose. The braking force could be decreased even when a very small break in the form of a pin-hole occurs. However, it is difficult to find a part where the thickness of the line is thin due to stone pecking or corrosion generated in the pin-hole formed on the brake line located under the lower part of the vehicle by the sensory evaluation or the conventional braking force test. Accordingly, it is necessary to analyze the condition and cause of the failure of the brake line more precisely when the accident investigation of the heavy vehicles, and also to examine the necessity of the advanced test for the aged brake line.

식생강화를 위한 다공성 소일 블록의 치수안정성 해석 (Analysis on Dimensional Stability of Porosity Soil Block for Vegetation Reinforcement)

  • 박상우;안태진;안상호;권순현
    • 한국습지학회지
    • /
    • 제15권1호
    • /
    • pp.91-103
    • /
    • 2013
  • 본 연구에서는 자연친화적인 호안 블록의 현장 적용시 충분한 기술적인 검증과 구조적, 수리학적 안정성 검토 등이 제대로 이루어지지 않고 있는 문제점을 개선하기 위해 생태적 기능을 확보할 수 있는 식생강화를 위한 다공성 소일 블록에 대하여 수리적 거동 변화에 따른 수리학적 안정성을 검토하였다. 대상구간을 선정하여 수치해석 및 수리모형실험을 실시하였으며 수치해석을 위해 1차원 수치해석모형인 HEC-RAS와 2차원 수치해석모형인 RMA-2를 이용하여 1, 2차원 수치해석을 실시하였고, Froude 상사법칙을 적용하여 식생 유, 무에 따른 축척된 수리모형실험을 실시하였다. 수리모형실험의 경우 실험결과에 대한 타당성을 위해 축척된 수리모형실험의 유속 및 소류력 결과를 원형으로 환산하여 1, 2차원 수치해석결과와 동일한 조건하에 비교 검토하였고 그 결과 비교적 일치된 결과가 나타난 것으로 확인되었으며 이에 따른 원형으로 환산된 소류력 결과를 기존 연구결과인 호안의 허용소류력과 비교함으로써 블록의 수리학적 안정성을 제시하였다.

압력제어용 DDV를 이용한 전기.유압 서보시스템의 식별 및 제어 (Identification and Control of a Electro-Hydraulic Servo System Using a Direct Drive Valve)

  • 이창돈;이상훈;곽동훈;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제9권2호
    • /
    • pp.124-130
    • /
    • 2003
  • The electro-hydraulic servo system with a servo valve is applied widely in force control. However, the composition of control system using a servo valve is difficult due to nonlinearities in the servo valve, such as square-root terms in flow equation. The electro-hydraulic servo system using a DDV(Direct Drive Valve) instead of a servo valve was proposed and it's characteristics was estimated. The DDV and whole system are modelled by parameter identification using the input-and-output data, then the models are verified by the comparison of simulation with experiment. Also, the state feedback controller has been designed based on this model, then the performance of the electro-hydraulic force servo system using a DDV is evaluated by simulation and experimental results.

발전소 배관지지용 유압완충기 개발

  • 박태조;구칠효;조광환;이동렬;이현;김연환
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1997년도 제26회 추계학술대회
    • /
    • pp.232-238
    • /
    • 1997
  • In this paper, a theoretical method is presented to design a hydraulic control valve system that consist of an important component in the hydraulic snubber. The hydraulic snubber is used essentially to support the piping systems at power plants. To calculate the force due to pressure drop and flow rate in the valve orifice and by-pass hole, Bernoulli equation is used. The Reynolds equation are numerically analyzed in the clearance gap between the valve cone and valve seat to estimate the friction force and leakage flow rate. Based on the detailed theoretical data, we developed successfully the hydraulic snubber for power plants.

  • PDF

표면조직 가공한 유압부품면에서의 윤활특성 (Lubrication Characteristics of Surface Textured Hydraulic Machine Components)

  • 이준오;박태조
    • 드라이브 ㆍ 컨트롤
    • /
    • 제9권4호
    • /
    • pp.26-31
    • /
    • 2012
  • Friction reduction between sliding hydraulic machine components is required to improve efficiency and reliability of hydraulic machineries. It is recently reported that surface texturing on sliding bearing surfaces can reduce the friction force highly. In this paper, numerical analysis is carried out to investigate the effect of dimple numbers and inlet boundary pressures on the lubrication characteristics of a parallel sliding bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. The results show that the pressure distribution, load capacity, dimensionless friction force and leakage with dimple number and their locations, and inlet pressures. The overall lubrication characteristics are highly affected by dimple numbers and boundary pressure. The numerical method adopted and results can be used in design of efficient hydraulic machine components.

컴플렉스법에 의한 수문 유압실린더의 최적 설치점 설계 (Design of Optimal Locating Points of the Hydraulic Cylinder Actuating a Sluice Gate Using the Complex Method)

  • 이성래
    • 한국자동차공학회논문집
    • /
    • 제13권6호
    • /
    • pp.170-176
    • /
    • 2005
  • The hydraulic cylinder is used for actuating the sluice gate which controls the volume of water in the reservoir. The locating points of hydraulic cylinder are restricted to limited space and determined to minimize the cylinder force necessary for actuating the sluice gate. Generally, the head end point of cylinder is fixed at underground and the rod end point of cylinder is connected to the gate plate when it is fully opened. Therefore there exist three parameters to be determined to minimize the cylinder force in the operation range of sluice gate. The optimal locating points of hydraulic cylinder are obtained using the complex method that is one kind of constrained direct search m method.