• Title/Summary/Keyword: Hydraulic Force

Search Result 675, Processing Time 0.023 seconds

A Mechanism Design of the 3-axial Road Simulator Linkage (3축 로드 시뮬레이터 링크부의 메카니즘 설계)

  • 정상화;류신호;김종태;이규태;장완식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.140-147
    • /
    • 2003
  • Full scale durability test in the laboratory is an essential of any fatigue life evaluation of components or structures of the automotive vehicle. Component testing is particularly important in today's highly competitive industries where the design to reduce weight and production costs must be balanced with the necessity to avoid expensive service failure. Generally, hydraulic road simulator is used to carry out the fatigue test and the vibration test. In this paper, the link unit which is able to realize the 3 element forces such as vertical force, lateral force, and longitudinal force that are applied to the road simulator is designed. Also, the designed link is verified with kinematics and inverse-kinematics. From this results, the designed factor satisfied the maximum stroke so that it satisfied the requirements for 3-axial road simulator.

A Numerical Analysis: Effects of Hydraulic Characteristics of a Hazardous Zone on the Face Stability in Subsea Tunnelling (해저터널 시공중 문제구간의 수리적 특성이 막장의 안정성에 미치는 영향에 관한 수치해석적 연구)

  • Hong, Eun-Soo;Park, Eui-Seob;Shin, Hee-Soon;Kim, Hyung-Mok;Ryu, Dong-Woo
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.366-374
    • /
    • 2008
  • Tunnelling under water table induces many geotechnical problems because of groundwater. In subsea tunneling, reduction of face stability can induce flooding in the vicinity of a fracture zone characterized by high permeability and high water pressure. In this study, the effects of high water pressure on the stability of a tunnel face in a limited zone with high permeability(hazardous zone) are analyzed. On the basis of the 'advance core' concept, the seepage force acting on a hypothetical cylinder ahead of a tunnel face is modeled. This study focuses on the hydraulic behavior of the ground ahead of the tunnel face by three-dimensional steady-state seepage analyses. The impact of the hazardous zone on the seepage force and stability of the tunnel face are simulated and analyzed. In light of the analysis results, it is estimated that the distance from the tunnel face to the exterior boundary limit, which the seepage force significantly affects the stability of the tunnel face, of a hypothetical cylinder is approximately 5 times the tunnel radii. Despite the restrictive assumptions of this study, the results are highly indicative regarding the risks of hazardous zones.

Characteristics of Binderless Briquettes for Indonesian Low-Rank Coals (인도네시아 저등급석탄의 무결합제 성형 특성)

  • Chun, Dong Hyuk;Rhim, Young Joon;Kim, Sang Do;Yoo, Jiho;Choi, Ho Kyung;Lim, Jeong Hwan;Lee, Sihyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.231-235
    • /
    • 2015
  • The characteristics of binderless briquettes for dried low-rank coal was studied in this work. Two kinds of Indonesian coals were used to briquette after drying them in electric oven. The characteristics of briquettes have been examined by moisture contents, particle size, hydraulic force, and storing period. The optimum moisture contents of briquettes were observed at between 10 wt% and 15 wt%. The strength of coal briquette was stronger as particle size became smaller. The strength of coal briquette was proportional to the hydraulic force under 300 kN, whereas there was little difference among the briquettes made at more than 300 kN of hydraulic force. The strength of briquettes sharply decreased for a week after produced, and then showed the tendency of converging. The results from this work can be a useful guideline of manufacturing and managing upgraded coal briquettes.

Performance Analysis of Urethane Packing in the Hydraulic Breaker by a Finite Element Method (유한요소해석을 이용한 유압브레이커용 우레탄 패킹의 성능분석)

  • Shin, Hyun Woo;Hong, Jong Woo;Choi, Yi Kwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.2
    • /
    • pp.139-147
    • /
    • 2016
  • Performances of urethane packing in the hydraulic breaker were analyzed using a finite element method. Because of high temperature and high pressure in the hydraulic breaker, it is better to use urethane rather than rubber as a packing material. We obtained the physical properties of urethane at elevated temperature by the tensile test. We analyzed buffer seal and U-packing maintaining the pressure and preventing oil leakage. Deformation, stress distribution, contact length, contact pressure of packing at each pressure step were obtained using finite element analysis. As the temperature increases, stress and contact force tend to decrease at low pressure. As the gap between piston and cylinder increases, contact length and contact forces decrease. Consequently, it is possible to design the packing section using these analyses, and construct a system to predict the possibility of oil leakage in the hydraulic breaker.

Development of the Seepage flow Monitoring Method by the Hydraulic Head Loss Rate on Sea Dike (수두손실률에 의한 방조제 침투류 감시기법 개발)

  • Eam, Sung-Hoon;Yoon, Chang-Jin;Kim, Seong-Pil;Heo, Jun;Kang, Byung-Yoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.60-68
    • /
    • 2010
  • In this study, the seepage flow monitoring method by hydaulic head loss rate graph was developed for the purpose of monitoring the seepage flow from the see side or from the lake on sea dike in which seepage force was varied periodically. The hydraulic head loss rate was defined in this method. The value of the rate is in the range from 0 to 1. the value of 0 means perfectly free flow of seepage. the value of 1 means perfect waterproofing. The value of coefficient of determination in the hydraulic head loss rate graph closer to 1 means that the seepage flow way is stable. The value of coefficient of determination in the hydraulic head loss rate graph closer to 0 means that the hole may exist or the piping may be in the progress. The pore water pressure data measured in Saemangeum sea dike was analyzed with the developed method The result showed that the variation of seepage flow state was detected sensitively by this method and the interception effect of sea dike could be estimated quantitatively.

  • PDF

Motion Synchronization of Control for Multi Electro-Hydraulic Actuators (가변구조제어기를 이용한 다중실린더 위치동조 제어)

  • Kim, Seong-Hoon;Seo, Jeong-Uk;Yoon, Young-Won;Park, Myeong-Kwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.9
    • /
    • pp.863-868
    • /
    • 2011
  • This paper presents a method to achieve a synchronous positioning objective for a dual-cylinder electro-hydraulic system with friction characteristics. The control system consists of a VSC (Variable Structure Controller) for each of the hydraulic cylinders and a PID (Proportional-Integral-Derivative) feedback controller. The PID controller is used for controlling the non-synchronous error generated by both cylinders when motion synchronization is carried out. To enhance the position-tracking performance of the individual cylinders friction characteristics is modeled in model, based on the estimated friction force. The simulation and experimental results show that the proposed method can effectively achieve the objective of position synchronization in the dualcylinder electro-hydraulic system, with maximum synchronization error with ${\pm}2\;mm$.

A Study of the Hydraulic Circuit Model for a Magnetorheological Damper Analysis (MR 댐퍼 해석을 위한 유압회로 모델에 대한 연구)

  • Chang, Moon Suk;Byeon, Woo Jin;Kim, Soo Tae;An, Chae Hean
    • Journal of Drive and Control
    • /
    • v.14 no.1
    • /
    • pp.8-13
    • /
    • 2017
  • This paper proposes a hydraulic circuit for a Magnetorheological (MR) damper that can be used for semi-active and active controls. Methods are presented for obtaining reliable damping force displacement and velocity data, and hysteresis loop data corresponding to applied current. In order to get reliable data, analysis using electric and electronic software, a series of tests. and comparative evaluations are required. A hydraulic circuit model is proposed that can be applied to analyze a MR damper without any assumptions where the yield stress data according to the applied current are known. Analysis results of the proposed hydraulic circuit are confirmed by experimental results within acceptable tolerance. This hydraulic circuit model can be applied to various MR dampers and systems.

Development of a Hydraulic Servo Cylinder with an Integrated Feedback Mechamism (일체형 파드백 기구를 갖는 유압 서보실린더 개발 연구)

  • Lee, Jae-Gyu;Kim, Ock-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2480-2490
    • /
    • 1996
  • This paper presents a new type of hydraulic servo chllinder which is characterized by its simple construction and an ubtegrated feedback mechanism. Piston position of the cylinder is controlled by eletrical input and mechamical feedback deduced from its own structure. Hydraulic pressure in each cylinder room is controlled by a poppet valve. The poppet is activated by a solenoid and is linked to the piston. Solenoid input current pulls up the poppet, which results in pressure drop and thus piston motion. The piston motion generates pull down force on the poppet by the linkage and the motion stops at equilibrium. In that way the piston position is controlled by an expernal input current. Characteristics of the servo cylinder is verified by stability analysis, tranient vehavior and steady state positing for step input. Design parameter analyses have been executed by derivation of analytical approximate solutions and by computer simulations. A prototype hydraulic servo cylinder is developed and tested. The experimental results show successful function of the servo cylinder and consistency with the theoritical results.

Analysis of a Variable Damper and Pneumatic Spring Suspension for Bicycle Forks using Hydraulic-Pneumatic Circuit Model (유공압 회로를 이용한 자전거 포크용 가변댐퍼-공압스프링 서스펜션의 해석)

  • Chang, Moon Suk;Choi, Young Hyu;Kim, Su Tae;Choi, Jae Il
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.7-13
    • /
    • 2019
  • The objective of this study was to present a damped pneumatic suspension, a bike fork suspension, which can adapt itself to incoming road excitations is presented in this paper. It consists of a hydraulic damper and a pneumatic spring in parallel with a linear spring. The study also proposed a variable and switchable orifice, in the hydraulic damper, to select appropriate damping property. Hydraulic-pneumatic circuit model for the bike fork suspension was established based on AMESim, in order to predict its performance. In addition, elastic-damping characteristics of the fork such as spring constant and viscous damping coefficient were computed and compared, for validation, with those evaluated by experiment using the universal test machine. Through simulation analysis and test, it was established that the hydraulic-pneumatic circuit model is effective and practical for development of future MTB suspensions.

Position Control of an Electro-hydraulic Servo System with Disturbance (외란을 갖는 전기유압 서보시스템의 위치제어)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • In a hydraulic control system, since a hydraulic cylinder drives a relatively large mass of an object, an external load force acts as a disturbance on the control performance of the system. Additionally, as the hydraulic system is used for a long period, there are disturbances that occur gradually, such as a drop in supply pressure because of abrasion of the pump, oil leakage from a valve, and oil leakage from a cylinder. In this study, a state feedback controller based on a linearization technique is applied. To prevent the performance degradation of the controller from the load disturbance, an Extended Luenberger observer (ELO) is used for the Extended system. The case of using the proportional controller, which is a representative linear controller, and the result of using the controller designed in this study are compared and reviewed through simulation. Also, we propose an experimental gain-setting method for a state feedback controller that can be used at industrial sites, and examine how the stability and control performance of the system changes because of the disturbance inputs through the experimental results.