• 제목/요약/키워드: Hydraulic Fluid

검색결과 1,196건 처리시간 0.032초

브레이크 부하를 이용한 유체커플링 실험장치 개발과 토크 성능 예측 (The Development of Hydraulic-Coupling Experimental Apparatus Using Brake Load and Prediction of Torque Performance)

  • 박용호;김기홍
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.100-107
    • /
    • 2000
  • The hydraulic couplings have been widely used in industries, automobile, and power-station drives including ships. A mathematical analysis by which the design and application of hydraulic couplings are made is used in conventional design formulae and general roto-dynamic theories. The fluid flow of hydraulic couplings can be considered to have two component, one circumferentially about the coupling axis, and the other passing fluid from the pump to the turbine in the plane of the coupling axis. Tests have been carried out on the full-scale production coupling. The performance test consists of taking measurement of torque of the fluid coupling for three different amount of working fluid inside with various loads to the output shaft. The purpose of this research is to construct the experimental test equipments and to establish a series of performance test for the domestically developed hydraulic couplings, and to obtain experimental results which can be used to improve the performance of the hydraulic coupling and to solve the practical problems confronted in operation.

  • PDF

유압 밸브-모터 시스템의 불확실성에 대한 $H_{\infty}$ 제어 (The $H_{\infty}$ control of the uncertainty for the hydraulic fluid valve-motor system)

  • 김도석;이준환;유삼현;이종원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.676-681
    • /
    • 2000
  • This study describes a hydraulic fluid property compensator under the various operating conditions. Because hydraulic fluid systems have much more excellent features than other control systems, they are used in many fields. However, the characteristics of hydraulic fluid are changed due to various operating conditions. This phenomenon is called uncertainty. Especially, bulk modulus is considered as the most dominant parameter in this study. Under the wide range of temperature and pressure, bulk modulus is changed. In order to overcome the uncertainty, $H_{\infty}$ technique will be used for this study. Spectral factorization, model-matching problem and controller parametrization are also applied to achieve the desired robust control action. Designed controller using the $H_{\infty}$ technique, is adopted for the hydraulic fluid valve-motor system.

  • PDF

유압유 점도가 액추에이터 성능에 미치는 영향 (Effects of Viscosity of Hydraulic Oil on the Performance of Actuator)

  • 김진형;한수민;김윤제
    • 한국유체기계학회 논문집
    • /
    • 제19권1호
    • /
    • pp.31-36
    • /
    • 2016
  • Hydraulic actuator is a primary component of the hydraulic valve systems. In this study, the thrust performance of hydraulic actuator was studied with different values of viscosity of hydraulic oil and rod diameter. Numerical analysis was performed using the commercial CFD code, ANSYS with 2-way FSI(Fluid-Structure Interaction) method and $k-{\varepsilon}$ turbulent model. Results show that increase in viscosity of hydraulic oil reduces the thrust of hydraulic actuator. In order to satisfy the output required of the actuator, it is necessary to compensate for the operating pressure. The results of pressure, velocity and thrust efficiency distributions in the hydraulic actuator were graphically depicted.

VHVI 기유의 제품 적용 기술에 관한 연구 - 건설 중장비용 유압유 (A Study On the Application of VHVI Base Oil - Hydraulic Fluid for Construction Equipment)

  • 권완섭;문우식;윤한희;김경웅
    • Tribology and Lubricants
    • /
    • 제20권1호
    • /
    • pp.33-40
    • /
    • 2004
  • This study represents the newly advanced formulation of hydraulic fluids for extended drain interval and introduces the performance results of used oil samples from various excavators. The used oil samples, in this paper, show that there is a sharp change in viscosity drop and moderate additive depletion when viscosity index of hydraulic oil is very high. For the extension of hydraulic fluid life, it is necessary to improve the stability of viscosity and oxidation. New target properties from the used oil analysis were proposed for extended life. Performance of newly developed hydraulic oil based on used oil analysis is compared with previously used one. The properties of new formulation are the viscosity index of 140 and improved thermal stability consists of VHVI base oil. Field test results showed the possibility of extension of fluid life. Additionally, for development of high performance product, new required propertied and performances were discussed.

유압제어식 멀티셀 패더롤의 가속시험을 통한 성능평가 기법 연구 (An Experimental Study on the Performance Evaluation Method of Padder Roll by Hydraulic Multi Cell with Acceleration Test)

  • 조경철;이은하;박시우;김수연
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권3호
    • /
    • pp.43-48
    • /
    • 2018
  • The hydraulic control valve, used in the CPB (cold-pad-Batch) cold dyeing system, passes through a pressurized material that absorbs the dye. The hydraulic control of the hydraulic control panel shall be driven in a uniform and precisely controlled manner, as it interferes directly with the dyschromatism. In this study, an acceleration test model was employed to verify the durability of the hydraulic control of the hydraulic control panel, which was manufactured by the scenic model, and the pre-roll angle was analyzed before the performance of acceleration test. Based on the change in the amount of deformation of the padder roll the durability of the padder roll was analyzed along with verification of the durability of the skin and the rubber coating in contact with the fabric. Furthermore, the accelerated test method used for hydraulic controlled multi-cell padder rolls was verified.

Surface Texturing에 의한 유압부품의 마찰저감 (Surface Texturing in Hydraulic Machine Components for Friction Reduction)

  • 박태조;김민규
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권1호
    • /
    • pp.27-33
    • /
    • 2016
  • In hydraulic machinery, the hydraulic fluid acts primarily as working fluid and secondarily as a lubricant. Hence, the viscous friction force acting on the sliding components should be reduced to improve the mechanical efficiency. It is now well known that the surface texturing is a useful method for friction reduction. In this study, using a commercial computational fluid dynamics (CFD) code, FLUENT, the lubrication characteristics of a surface textured slider bearing under high boundary pressure difference is studied. The streamlines, velocity profiles, pressure distributions, load capacity, friction force and leakage flowrate are highly affected by the film thickness ratio and the textured region. Partial texturing at the inlet region of the inclined slider bearing can reduce both friction force and leakage flowrate than in the untextured case. The present results can be used to improve the lubrication characteristics of hydraulic machinery.

밸브 수압측정기의 유동해석 (Computational Fluid Dynamics of Hydraulic Valve Meter)

  • 이종선
    • 한국산학기술학회논문지
    • /
    • 제13권5호
    • /
    • pp.1963-1968
    • /
    • 2012
  • 본 논문은 현장에서 사용하고 있는 밸브 수압측정기를 3차원 자동설계 프로그램인 CATiA를 활용하여 설계하였다. 또한 유한요소 해석코드인 ANSYS를 활용하여 설계된 밸브 수압측정기에 대하여 유동해석을 수행하여 내부압력에 따른 유체의 흐름을 구하였다. 이러한 해석결과는 새로운 밸브 수압측정기를 개발하는데 기초자료로 활용될 계획이며 개발예정인 밸브 수압측정기는 밸브 점검 시 시간을 단축하고, 사고를 방지하여 안전성을 향상시킨다.

사판식 피스톤 모터의 정압베어링 윤활특성에 관한 연구 (A Study on Lubrication Characteristic of the Hydrostatic Bearing In Swash Plate Type Piston Motor)

  • 이용범;김광민
    • 동력기계공학회지
    • /
    • 제15권5호
    • /
    • pp.5-9
    • /
    • 2011
  • The hydraulic piston using a hydrostatic bearing has been used widely due to its satisfying performance at very high pressurized circumstance and relative higher power density in comparison to conventional one. For high pressurization, enhanced efficiency and long durability of the hydraulic piston, the design of hydrostatic bearing is at issue, which is installed between piston shoe and swash plate. The performance of the hydrostatic bearing is influenced significantly by the assembly of the piston shoe consisting of circular land and recess. In this study, to estimate the performance of the hydrostatic bearing, the characteristics for lubrication of the assembly of the piston shoe were investigated by measuring a leakage rate of hydraulic fluid under an experimental condition, where a rotating velocity of the piston, hydraulic pressure and temperature of the hydraulic fluid were changed systematically. In addition, a film thickness of the hydraulic fluid on the piston shoe was measured and compared to theoretical one.

분포정수계 유압관로 모델의 동특성 해석 (Analysis of Dynamic Characteristics of Hydraulic Transmission Lines with Distributed Parameter Model)

  • 김도태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.67-73
    • /
    • 2018
  • The paper deals with an approach to time domain simulation for closed end at the downstream of pipe, hydraulic lines terminating into a tank and series lines with change of cross sectional area. Time domain simulation of a fluid power systems containing hydraulic lines is very complex and difficult if the transfer functions consist of hyperbolic Bessel functions which is the case for the distributed parameter dissipative model. In this paper, the magnitudes and phases of the complex transfer functions of hydraulic lines are calculated, and the MATLAB Toolbox is used to formulate a rational polynomial approximation for these transfer functions in the frequency domain. The approximated transfer functions are accurate over a designated frequency range, and used to analyze the time domain response. This approach is usefully to simulate fluid power systems with hydraulic lines without to approximate the frequency dependent viscous friction.