It is necessary to decide the pumping rate and pumping well location together with the capture zone in order to determine an appropriate groundwater remediation strategy to manage the contaminated groundwater. The relationship between the capture zone and the drawdown radius of influence ($ROI_s$) was considered. $ROI_{cs}$ is defined as the distance where the criteria of drawdown is cs meter from pumping well in this paper. A method to decide the required pumping rate for the remediation of contaminated groundwater in order to create appropriate $ROI_{cs}$ is suggested by using the Theis equation (1935) and Cooper-Jacob equation (1946). It was shown in this study that $ROI_{cs}$ is in proportion to the pumping rate and the criteria of drawdown, which decides $ROI_{cs}$, is inversely proportional to Ti value (transmissivity ${\times}$ hydraulic gradient). The pumping rate which creates the required $ROI_{cs}$ could be planned through the relationship between the $ROI_{cs}$ and pumping rates ($ROI_{cs}$-Q curve) of the field sites 1, 2 and 3. If the drawdown is investigated along with Ti value and pumping rate at a specific site where pump and treat remediation is planned, it is expected that the required criteria of drawdown can be evaluated by using the relationship between the cs and Ti (cs-Ti curve).
충격파의 높이나 속도는 홍수제어조작이나 수로벽과 빠른 유속을 가지는 하천에서 교량의 설계에 중요한 자료가 된다. 따라서 광범위한 조건에서 흐름의 불연속면을 모의할 수 있는 수치모형이 요구된다. 본 연구에서는 천수방정식을 지배방정식으로 한 Godunov 형 유한체적법 모형을 개발하였다. Riemann 해법으로 Roe(1981)의 해법이 사용된다. 이 모형은 본 연구에서 비구조적격자(unstructured grids)를 사용하기 위해 개발된 수정 MUSCL을 도입하였다. 양해법을 쓰는 본 모형은 시간간격을 자동 계산한다. 개발된 모형을 전형적인 이차원 댐 붕괴파 모의, 수리모형 실험에서 행해진 붕괴파 모의, 그리고 수리모형 실험에서 행해진 만곡수로에서의 정상상태 모의 등에 적용하였다. 그 적용결과에 의해 다음과 같이 결론을 내었다. 1)유한체적법은, 충격파 모의를 위한 수치해석 기법인 Godunov 형 방법과 잘 결합될 수 있기 때문에 충격파를 모의하기에 적당한 방법이다. 2)수정 MUSCL과 결합된 유한체적법 모형이 충격파를 잘 포착함으로써 수정 MUSCL의 적용성이 입증되었다.
상수관망에서 관로파열을 예측하고 파열영향을 감소시키는 작업은 관망의 신뢰도와 밀접한 관계가 있다. 기존의 상수관망의 설계에서는 관로의 배치 및 각 관로에 대한 수리학적 능력 및 파열에 대한 영향이 고려되지 않았다. 본 연구에서는 도학을 이용하여 상수관망의 기하학적 구성상태에 따른 관로 파열에 대한 영향을 예측하고 영향을 감소시켜 상수관망의 신뢰도를 증가시킬 수 있는 방법을 제시하였다. 기존의 상수관망은 폐합관로를 이루고 있지만 특정관로가 파열되었을 경우 적정한 유량공급이 불가능하여 관망의 대부분의 절점에 심각한 수두감소와 같은 부작용이 발생할 수 있었다. 본 연구에서 개발된 관로파괴 영향해석 기법을 이용하여 관망 설계시 적절한 관경 및 관로를 배치를 구성하여 관로 파괴시 발생하는 수요절점에서의 극단적인 수두감소를 극복할 수 있었고 사용자들에게 안정적인 유량공급이 가능하여 보다 신뢰성 있는 상수관망 시스템이 될 수 있었다.
가축사육지역으로부터 발생되는 강우유출수 처리를 위해 건설된 인공습지에 대해 2010년 5월부터 2011년 11월까지 수행한 20회의 강우시 모니터링을 통하여 얻은 자료를 분석한 결과 강우시 저감효율은 TSS 88%, BOD 54%, $COD_{Mn}$ 35%, $COD_{Cr}$ 70%, TN 31%, TP 64%이었다. 이론적으로 강우계급의 증가(강우유출량 증가)는 습지의 수리학적 교환비율을 증가시키기 때문에 TSS 저감효율은 감소해야하는데 교환비율이 1에 접근하였을 때 대략 55%의 효율을 달성하였다. 또한 연속적인 강우활동, 개별적인 강우사상의 대소, 강도, 선행건기 일수 등 습지에서는 실험자가 제어할 수 없는 수많은 자연변수들이 복합적으로 작용하기 때문에 처리효율의 변동이 매우 컸다. 효율에 가장 큰 영향을 미친 요인으로는 수리학적 요인과 함께 조류증식이 성능 불확실성에 크게 기여하였다.
The objective of this study was to establish the optimal system operating strategies for nitrogen and phosphorus removal through model simulation system built for advanced wastewater treatment targeting on simultaneous temporal/special phase isolation BNR process. The simulation system was built with unit process modules using object modules in GPS-X code. The system was well verified by field experiment data. Simulation study was carried out to investigate performance response to design and operation parameters, i.e. hydraulic retention time (HRT), solids retention time (SRT), and cycle time. The process operated at HRTs of 10~15 hours, longer SRTs, and cycle time of 2 hours showed optimal removal of nitrogen. The HRTs of 10~15 hours, SRTs of 20~25 days, and longer cycle time was optimal for phosphorus removal. Both simulation and field studies showed that optimal operating strategies satisfying both the best nitrogen and phosphorus removals include HRTs ranged 10~15 hours, SRTs ranged 20~25 days, and cycle times of 4~8 hours. The simulation system with modularization of generalized components in BNR processes was, therefore, believed to be a powerful tool for establishing optimal strategies of advanced wastewater treatment.
Managed Aquifer Recharge (MAR) in the form of Aquifer Storage and Recovery (ASR) systems are being applied for numerous water augmentation projects both in developed and developing countries. Given the onset of Climate Change and its influence on weather patterns and land use, it has been acknowledged the utilization of this technology will be ever increasing. This technique like all others does have its drawbacks or disadvantages, whereby to overcome these drawbacks or disadvantages it is recommended that logical planning process be followed. In this study, we developed a decision framework known as "Decision framework for the planning, designing, construction/testing and implementation of subsurface water storage system" to further standardize the planning and design process of subsurface water storage system to increase the probability of having a successful ASR/ASTR project. The formulation of this framework was based on earlier frameworks, guidelines, published papers and technical reports which were compiled into a data collection database. The database of which consider both qualitative and quantitative aspect for example recharge objectives, site location, water chemistry of the native, source and recovered water, aquifer characteristics(hydraulic conductivity, transmissivity, porosity), injection/pumping rate, ecological constraints, societal restrictions, regulatory restrictions etc. The assimilation of these factors into a singular framework will benefit the broad spectrum of stakeholder as it maps the chronological order under which ASR project should be undertaken highlighting at each stage the feasibility of the project. The final stage of which should result in fully operational ASR system. The framework was applied to two case studies and through the application of a modified ASR site selection suitability index (Brown et al., 2005) a score was derived to identify the performance of each site. A high score of which meant a maximize chance of success given the reduce presence of project constraints.
Structural Health Monitoring (SHM) gradually becomes a technique for ensuring the health and safety of civil infrastructures and is also an important approach for the research of the damage accumulation and disaster evolving characteristics of civil infrastructures. It is attracting prodigious research interests and the active development interests of scientists and engineers because a great number of civil infrastructures are planned and built every year in mainland China. In a SHM system the sheer number of accompanying wires, fiber optic cables, and other physical transmission medium is usually prohibitive, particularly for such structures as offshore platforms and long-span structures. Fortunately, with recent advances in technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensor technique has been developing rapidly and is being used gradually in the SHM of civil engineering structures. In this paper, some recent advances in the research, development, and implementation of wireless sensors for the SHM of civil infrastructures in mainland China, especially in Dalian University of Technology (DUT) and Harbin Institute of Technology (HIT), are introduced. Firstly, a kind of wireless digital acceleration sensors for structural global monitoring is designed and validated in an offshore structure model. Secondly, wireless inclination sensor systems based on Frequency-hopping techniques are developed and applied successfully to swing monitoring of large-scale hook structures. Thirdly, wireless acquisition systems integrating with different sensing materials, such as Polyvinylidene Fluoride(PVDF), strain gauge, piezoresistive stress/strain sensors fabricated by using the nickel powder-filled cement-based composite, are proposed for structural local monitoring, and validating the characteristics of the above materials. Finally, solutions to the key problem of finite energy for wireless sensors networks are discussed, with future works also being introduced, for example, the wireless sensor networks powered by corrosion signal for corrosion monitoring and rapid diagnosis for large structures.
The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants.
A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.
각종 수공구조물 설계를 위한 첨두홍수량을 추정시 합리식(rational formula) 및 가지야마(Kajiyama)공식 등을 사용하고 있으나, 이러한 방법들을 이용하여 가능최대홍수량(PMF)을 산정하기 위해서는 가능최대강수량(PMP)의 추정이 선행되어야 하므로 미계측지역에서는 적용에 상당한 제약이 따른다. Creager 등이 1945년에 제시한 Creager방법은 비홍수량산정기법의 일종으로 유역면적과 PMF사이의 비선형성을 직접 수식화하여 제공하므로 PMP값이 주어지지 않은 상황에서 PMF산정이 가능하며, 주로 중규모이상 다목적댐의 PMF 산정시 사용되어 왔는데, 국내에는 아직 적용된 사례가 많지 않다. 본 연구에서는 PMP도를 이용한 강우-유출 모델로 산정된 상수전용댐과 다목적댐의 PMF를 이용하여 유역규모와 강우지속시간에 따라 보편적으로 적용할 수 있는 Creager 공식의 매개변수와 Creager 계수값의 결정범위 및 기준 등을 산정하여 국내 유역에 적용가능한 방법을 제시하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.