• 제목/요약/키워드: Hydraulic Design

검색결과 2,037건 처리시간 0.026초

영향반경을 이용한 양수처리법 설계에 대한 연구 (A Study on Pump and Treat Design through Evaluation of Radius of Influence)

  • 김정우;이강근
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제19권3호
    • /
    • pp.1-14
    • /
    • 2014
  • It is necessary to decide the pumping rate and pumping well location together with the capture zone in order to determine an appropriate groundwater remediation strategy to manage the contaminated groundwater. The relationship between the capture zone and the drawdown radius of influence ($ROI_s$) was considered. $ROI_{cs}$ is defined as the distance where the criteria of drawdown is cs meter from pumping well in this paper. A method to decide the required pumping rate for the remediation of contaminated groundwater in order to create appropriate $ROI_{cs}$ is suggested by using the Theis equation (1935) and Cooper-Jacob equation (1946). It was shown in this study that $ROI_{cs}$ is in proportion to the pumping rate and the criteria of drawdown, which decides $ROI_{cs}$, is inversely proportional to Ti value (transmissivity ${\times}$ hydraulic gradient). The pumping rate which creates the required $ROI_{cs}$ could be planned through the relationship between the $ROI_{cs}$ and pumping rates ($ROI_{cs}$-Q curve) of the field sites 1, 2 and 3. If the drawdown is investigated along with Ti value and pumping rate at a specific site where pump and treat remediation is planned, it is expected that the required criteria of drawdown can be evaluated by using the relationship between the cs and Ti (cs-Ti curve).

충격파 모의를 위한 이차원 유한체적 비정상 흐름 모형 (Two-Dimensional Finite-Volume Unsteady-Flow Model for Shocks)

  • 이길성;이성태
    • 한국수자원학회논문집
    • /
    • 제31권3호
    • /
    • pp.279-290
    • /
    • 1998
  • 충격파의 높이나 속도는 홍수제어조작이나 수로벽과 빠른 유속을 가지는 하천에서 교량의 설계에 중요한 자료가 된다. 따라서 광범위한 조건에서 흐름의 불연속면을 모의할 수 있는 수치모형이 요구된다. 본 연구에서는 천수방정식을 지배방정식으로 한 Godunov 형 유한체적법 모형을 개발하였다. Riemann 해법으로 Roe(1981)의 해법이 사용된다. 이 모형은 본 연구에서 비구조적격자(unstructured grids)를 사용하기 위해 개발된 수정 MUSCL을 도입하였다. 양해법을 쓰는 본 모형은 시간간격을 자동 계산한다. 개발된 모형을 전형적인 이차원 댐 붕괴파 모의, 수리모형 실험에서 행해진 붕괴파 모의, 그리고 수리모형 실험에서 행해진 만곡수로에서의 정상상태 모의 등에 적용하였다. 그 적용결과에 의해 다음과 같이 결론을 내었다. 1)유한체적법은, 충격파 모의를 위한 수치해석 기법인 Godunov 형 방법과 잘 결합될 수 있기 때문에 충격파를 모의하기에 적당한 방법이다. 2)수정 MUSCL과 결합된 유한체적법 모형이 충격파를 잘 포착함으로써 수정 MUSCL의 적용성이 입증되었다.

  • PDF

상수관망의 관로파열 영향 해석 (Analysis of Pipe-Burst effect in Water Distribution Network)

  • 박재홍
    • 한국수자원학회논문집
    • /
    • 제35권6호
    • /
    • pp.665-675
    • /
    • 2002
  • 상수관망에서 관로파열을 예측하고 파열영향을 감소시키는 작업은 관망의 신뢰도와 밀접한 관계가 있다. 기존의 상수관망의 설계에서는 관로의 배치 및 각 관로에 대한 수리학적 능력 및 파열에 대한 영향이 고려되지 않았다. 본 연구에서는 도학을 이용하여 상수관망의 기하학적 구성상태에 따른 관로 파열에 대한 영향을 예측하고 영향을 감소시켜 상수관망의 신뢰도를 증가시킬 수 있는 방법을 제시하였다. 기존의 상수관망은 폐합관로를 이루고 있지만 특정관로가 파열되었을 경우 적정한 유량공급이 불가능하여 관망의 대부분의 절점에 심각한 수두감소와 같은 부작용이 발생할 수 있었다. 본 연구에서 개발된 관로파괴 영향해석 기법을 이용하여 관망 설계시 적절한 관경 및 관로를 배치를 구성하여 관로 파괴시 발생하는 수요절점에서의 극단적인 수두감소를 극복할 수 있었고 사용자들에게 안정적인 유량공급이 가능하여 보다 신뢰성 있는 상수관망 시스템이 될 수 있었다.

강우유출수 처리목적 인공습지의 강우시 오염물질 저감특성에 관한 연구 (Reduction Efficiency of the Stormwater Wetland from Animal Feeding-Lot)

  • 박기수;우사평;김영철
    • 한국습지학회지
    • /
    • 제15권1호
    • /
    • pp.79-90
    • /
    • 2013
  • 가축사육지역으로부터 발생되는 강우유출수 처리를 위해 건설된 인공습지에 대해 2010년 5월부터 2011년 11월까지 수행한 20회의 강우시 모니터링을 통하여 얻은 자료를 분석한 결과 강우시 저감효율은 TSS 88%, BOD 54%, $COD_{Mn}$ 35%, $COD_{Cr}$ 70%, TN 31%, TP 64%이었다. 이론적으로 강우계급의 증가(강우유출량 증가)는 습지의 수리학적 교환비율을 증가시키기 때문에 TSS 저감효율은 감소해야하는데 교환비율이 1에 접근하였을 때 대략 55%의 효율을 달성하였다. 또한 연속적인 강우활동, 개별적인 강우사상의 대소, 강도, 선행건기 일수 등 습지에서는 실험자가 제어할 수 없는 수많은 자연변수들이 복합적으로 작용하기 때문에 처리효율의 변동이 매우 컸다. 효율에 가장 큰 영향을 미친 요인으로는 수리학적 요인과 함께 조류증식이 성능 불확실성에 크게 기여하였다.

시공간 동시분할 공정 시뮬레이션을 통한 질소 및 인 제거 최적화 방안 (Optimization of Nitrogen and Phosphorus Removal of Temporal and Spatial Isolation Process by Model Simulation System)

  • 유동진;장덕;신형수;박상민;홍기호;김수영;김명준
    • 한국물환경학회지
    • /
    • 제23권2호
    • /
    • pp.206-215
    • /
    • 2007
  • The objective of this study was to establish the optimal system operating strategies for nitrogen and phosphorus removal through model simulation system built for advanced wastewater treatment targeting on simultaneous temporal/special phase isolation BNR process. The simulation system was built with unit process modules using object modules in GPS-X code. The system was well verified by field experiment data. Simulation study was carried out to investigate performance response to design and operation parameters, i.e. hydraulic retention time (HRT), solids retention time (SRT), and cycle time. The process operated at HRTs of 10~15 hours, longer SRTs, and cycle time of 2 hours showed optimal removal of nitrogen. The HRTs of 10~15 hours, SRTs of 20~25 days, and longer cycle time was optimal for phosphorus removal. Both simulation and field studies showed that optimal operating strategies satisfying both the best nitrogen and phosphorus removals include HRTs ranged 10~15 hours, SRTs ranged 20~25 days, and cycle times of 4~8 hours. The simulation system with modularization of generalized components in BNR processes was, therefore, believed to be a powerful tool for establishing optimal strategies of advanced wastewater treatment.

Development of a decision framework for the designing and implementation of a sustainable underground water storage system

  • Gladden, Lennox Alexander;Park, Namsik
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2015년도 학술발표회
    • /
    • pp.244-244
    • /
    • 2015
  • Managed Aquifer Recharge (MAR) in the form of Aquifer Storage and Recovery (ASR) systems are being applied for numerous water augmentation projects both in developed and developing countries. Given the onset of Climate Change and its influence on weather patterns and land use, it has been acknowledged the utilization of this technology will be ever increasing. This technique like all others does have its drawbacks or disadvantages, whereby to overcome these drawbacks or disadvantages it is recommended that logical planning process be followed. In this study, we developed a decision framework known as "Decision framework for the planning, designing, construction/testing and implementation of subsurface water storage system" to further standardize the planning and design process of subsurface water storage system to increase the probability of having a successful ASR/ASTR project. The formulation of this framework was based on earlier frameworks, guidelines, published papers and technical reports which were compiled into a data collection database. The database of which consider both qualitative and quantitative aspect for example recharge objectives, site location, water chemistry of the native, source and recovered water, aquifer characteristics(hydraulic conductivity, transmissivity, porosity), injection/pumping rate, ecological constraints, societal restrictions, regulatory restrictions etc. The assimilation of these factors into a singular framework will benefit the broad spectrum of stakeholder as it maps the chronological order under which ASR project should be undertaken highlighting at each stage the feasibility of the project. The final stage of which should result in fully operational ASR system. The framework was applied to two case studies and through the application of a modified ASR site selection suitability index (Brown et al., 2005) a score was derived to identify the performance of each site. A high score of which meant a maximize chance of success given the reduce presence of project constraints.

  • PDF

Design, calibration and application of wireless sensors for structural global and local monitoring of civil infrastructures

  • Yu, Yan;Ou, Jinping;Li, Hui
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.641-659
    • /
    • 2010
  • Structural Health Monitoring (SHM) gradually becomes a technique for ensuring the health and safety of civil infrastructures and is also an important approach for the research of the damage accumulation and disaster evolving characteristics of civil infrastructures. It is attracting prodigious research interests and the active development interests of scientists and engineers because a great number of civil infrastructures are planned and built every year in mainland China. In a SHM system the sheer number of accompanying wires, fiber optic cables, and other physical transmission medium is usually prohibitive, particularly for such structures as offshore platforms and long-span structures. Fortunately, with recent advances in technologies in sensing, wireless communication, and micro electro mechanical systems (MEMS), wireless sensor technique has been developing rapidly and is being used gradually in the SHM of civil engineering structures. In this paper, some recent advances in the research, development, and implementation of wireless sensors for the SHM of civil infrastructures in mainland China, especially in Dalian University of Technology (DUT) and Harbin Institute of Technology (HIT), are introduced. Firstly, a kind of wireless digital acceleration sensors for structural global monitoring is designed and validated in an offshore structure model. Secondly, wireless inclination sensor systems based on Frequency-hopping techniques are developed and applied successfully to swing monitoring of large-scale hook structures. Thirdly, wireless acquisition systems integrating with different sensing materials, such as Polyvinylidene Fluoride(PVDF), strain gauge, piezoresistive stress/strain sensors fabricated by using the nickel powder-filled cement-based composite, are proposed for structural local monitoring, and validating the characteristics of the above materials. Finally, solutions to the key problem of finite energy for wireless sensors networks are discussed, with future works also being introduced, for example, the wireless sensor networks powered by corrosion signal for corrosion monitoring and rapid diagnosis for large structures.

POWER UPRATES IN NUCLEAR POWER PLANTS: INTERNATIONAL EXPERIENCES AND APPROACHES FOR IMPLEMENTATION

  • Kang, Ki-Sig
    • Nuclear Engineering and Technology
    • /
    • 제40권4호
    • /
    • pp.255-268
    • /
    • 2008
  • The greater demand for electricity and the available capacity within safety margins in some operating NPPs are prompting nuclear utilities to request license modification to enable operation at a higher power level, beyond their original license provisions. Such plant modifications require an in-depth safety analysis to evaluate the possible safety impact. The analysis must consider the thermo hydraulic, radiological and structural aspects, and the plant behavior, while taking into account the capability of the structures, systems and components, and the reactor protection and safeguard systems set points. The purpose of this paper is to introduce international experiences and approaches for implementation of power uprates related to the reactor thermal power of nuclear power plants. The paper is intended to give the reader a general overview of the major processes, work products, issues, challenges, events, and experiences in the power uprates program. The process of increasing the licensed power level of a nuclear power plants is called a power uprate. One way of increasing the thermal output from a reactor is to increase the amount of fissile material in use. It is also possible to increase the core power by increasing the performance of the high power bundles. Safety margins can be maintained by either using fuels with a higher performance, or through the use of improved methods of analysis to demonstrate that the required margins are retained even at the higher power levels. The paper will review all types of power uprates, from small to large, and across various reactor types, including light and heavy water, pressurized, and boiling water reactors. Generally, however, the content of the report focuses on power uprates of the stretch and extended type. The International Atomic Energy Agency (IAEA) is developing a technical guideline on power uprates and side effects of power uprates in nuclear power plants.

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.

Creager 기법을 이용한 지속시간별 가능최대홍수량 산정 (Estimation of Probable Maximum Flood by Duration using Creager Method)

  • 강부식;류승엽
    • 한국방재학회 논문집
    • /
    • 제11권1호
    • /
    • pp.77-84
    • /
    • 2011
  • 각종 수공구조물 설계를 위한 첨두홍수량을 추정시 합리식(rational formula) 및 가지야마(Kajiyama)공식 등을 사용하고 있으나, 이러한 방법들을 이용하여 가능최대홍수량(PMF)을 산정하기 위해서는 가능최대강수량(PMP)의 추정이 선행되어야 하므로 미계측지역에서는 적용에 상당한 제약이 따른다. Creager 등이 1945년에 제시한 Creager방법은 비홍수량산정기법의 일종으로 유역면적과 PMF사이의 비선형성을 직접 수식화하여 제공하므로 PMP값이 주어지지 않은 상황에서 PMF산정이 가능하며, 주로 중규모이상 다목적댐의 PMF 산정시 사용되어 왔는데, 국내에는 아직 적용된 사례가 많지 않다. 본 연구에서는 PMP도를 이용한 강우-유출 모델로 산정된 상수전용댐과 다목적댐의 PMF를 이용하여 유역규모와 강우지속시간에 따라 보편적으로 적용할 수 있는 Creager 공식의 매개변수와 Creager 계수값의 결정범위 및 기준 등을 산정하여 국내 유역에 적용가능한 방법을 제시하였다.