• 제목/요약/키워드: Hydraulic Design

검색결과 2,028건 처리시간 0.032초

CFD를 이용한 축류 유체 터빈 설계: 블레이드 수에 따른 성능 연구 (DESIGN OF AXIAL FLOW HYDRAULIC TURBINE USING CFD APPROACH: STUDY OF TURBINE PERFORMANCE ACCORDING TO THE NUMBER OF RUNNER BLADE)

  • 임형섭;김성완;백제현
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.561-566
    • /
    • 2011
  • In this paper, 1-D design of axial flow hydraulic turbine including runner blades, spiral casing with distributors(guide vanes and stay vane), and draft tube was conducted and then 3-D flow analysis was carried out using CFX-12.1. The results of 3 runners showed that with an increase in the number of blades, the flow rate and the power of the turbine system increased. On the other hand. the runner loss was not directly connected with the number of blades. As a result, proper blade number could be selected and more than 100kW small hydraulic turbine could be designed.

  • PDF

컴플렉스법에 의한 유압시스템의 최적 설계 (Optimal Design of Hydraulic System Using the Complex Method)

  • 이성래;이용범;박종호
    • 유공압시스템학회논문집
    • /
    • 제1권4호
    • /
    • pp.1-8
    • /
    • 2004
  • The optimum design parameters of several hydraulic systems are obtained using the complex method that is one kind of constrained direct search method. First, the parameters of lead-lag controller of the direct drive servovalve is designed using the complex method to satisfy the steady-state error requirement. Second, the optimum locating point of hydraulic cylinder Is determined to minimize the cylinder force in the operation range of rotational sluice gate. For the third application case, the optimum piston area of hydraulic cylinder is determined to minimize the man power to elevate the manually operated sluice gate.

  • PDF

$H_\infty$제어에 의한 전기${\cdot}$유압 서보계의 위치제어 (Position Control of Electro-Hydraulic Servo System Using $H_\infty$)

  • 박경섭;김도태
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.103-108
    • /
    • 2005
  • In this paper, a controller design procedure for an electro-hydraulic positioning systems have developed using $H_\infty$ control theory. The generalized models and weighting functions for a multiplicative uncertainty modelling error is presented along with $H_\infty$ controller designs in order to investigate the robust stability and performance. The multiplicative uncertainty case is specifically suited for the design of an electro-hydraulic positioning control systems using $H_\infty$ control.

  • PDF

유압 피스톤 펌프의 밸브 플레이트 랜드부 압력 특성 (Pressure characteristics at the land of valve plate in the oil hydraulic axial piston pump)

  • 최형완;김종기;정재연
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.221-227
    • /
    • 2000
  • The design of the valve plate is most important to increase efficiency in the oil hydraulic axial piston pump. A theoretical study was carried out to clarify the pressure characteristics at the land of the valve plate in the oil hydraulic axial piston pump. Dynamic pressure acts on the land of the valve plate was computed numerically with discharge pressure, rotational speed and swash plate angle. Pressure distribution between the valve plate and the cylinder block also was obtained with dynamic pressure. The results are applicable to improve the design technique of the valve plate in the oil hydraulic axial piston pump.

  • PDF

유압 브레이커의 자동타격력 제어기구 설계에 관한 연구 (A Study on the Automatic Impact Force Control Mechanism Design for the Hydraulic)

  • 강영기;장주섭
    • 드라이브 ㆍ 컨트롤
    • /
    • 제19권3호
    • /
    • pp.1-8
    • /
    • 2022
  • In this paper, the design of automatic impact force control mechanism of hydraulic breaker was studied. The control mechanism uses the change of piston upper chamber pressure, when the hydraulic breaker impacts various strength rock. The piston stroke is controlled by rock strength sensing valve, piston stroke switching valve, and piston control valve. It is imperative to denote the area of each valve section, the spring constant of the spring. It provides convenience to users by automatically adjusting the appropriate striking force, according to the strength of the rock. Additionally, by increasing work productivity, it can contribute to reducing greenhouse gas emissions due to fuel efficiency reduction.

유압밸브의 원격제어를 위한 Backcap 시스템 설계 연구 (Ddsign of a backcap system for remote control of hydraulic valves)

  • 이재규;명태식;김경진;김옥현
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.65-74
    • /
    • 1994
  • Backcap is an electric remote control system for the operation of directional flow control valves. This paper presents a new type of basckcap system which is characterized by its simple construction. The backcap is essentially a hydraulic cylinder of which the piston is connected to a spool of hydraulic valve and controlled by input current. An inherent feedback is imposed on its mechanism so that no artificial noe is needed. Characteristics of the backcap is verified by stability analysis, transient motion and steady state positioning for step inputs. Design parameter analyses have been executer by some analytical approaches and computer simulations, which lead to their optimal valves. These results contributed to an effective new backcap system and its design strategy.

  • PDF

트로코이드 펌프 설계방법 및 내부 유동 해석연구 (Internal flow Analysis Research Design and Methodology for Trochoid Pump)

  • 정승원;정원지;김명식;전주열
    • 한국생산제조학회지
    • /
    • 제23권1호
    • /
    • pp.87-93
    • /
    • 2014
  • This paper provides a methodology for extracting design data from the three-dimensional design software SolidWorks$^{(R)}$, which is based on the existing trochoid pump design equations that are used by hydraulic field engineers. The data extracted from the SolidWorks$^{(R)}$ model are input to a hydraulic analysis software AMESim model to determine the design factors that can influence the properties of a trochoid pump. On the basis of the simulation results, this paper proposes a method to reduce the flow loss by adjusting the outlet angle of the trochoid pump. This proposal was verified by using actual experimental results, which confirmed that adjusting the outlet angle can increase the flow rate. Hence, the results presented in this paper can contribute to the prototyping of a trochoid pump by reducing the cost associated with a trial-and-error design.