• 제목/요약/키워드: Hydraulic Dam

검색결과 277건 처리시간 0.025초

중심코어형 사력댐의 코어죤 침투량 예측기법 (Estimation of Seepage Rate through Core Zone of Rockfill Dam)

  • 이종욱;임희대
    • 한국지반공학회논문집
    • /
    • 제26권4호
    • /
    • pp.47-58
    • /
    • 2010
  • 불포화 흐름을 고려하지 않는 도해법 (Casagrande, 1961; Cedergren, 1997)과 근사식(Sakamoto, 1998)에 의한 중심코어형 사력댐 코어죤의 침투량은 실제 침투거동과는 차이가 있고, 저수위 변화에 대한 침투량 변화경향의 파악도 곤란하다. 본 연구에서는 소양강댐에 대한 2차원 정상상태 및 비정상상태 침투류해석으로 저수위, 포화투수계수, 불포화수리특성 변화에 대한 정상상태 침투량과 정상상태 도달시간에 미치는 영향요인을 분석하였다. 분석결과 침투량은 정규화된 선형 관계식으로 예측이 가능하고, 불포화 예측변수 n이 정상상태 침투량과 정상상태 도달시간에 가장 큰 영향을 주었다. 본 연구에서 제시한 예측기법은 복잡한 3차원 해석 및 여러 단면에 대한 2차원 해석을 수행하지 않고도 댐 설계자 및 안전관리 실무자가 중심코어형 사력댐의 침투량을 산정하여 실측치와의 정량적 분석에 손쉽게 이용할 수 있을 것으로 생각된다.

수력댐 비상방류밸브에 대한 캐비테이션에 대한 연구 (The Study of the Cavitation for the Urgency Released Valve in Hydraulic Dam)

  • 노형운;이영호;이갑수
    • 한국유체기계학회 논문집
    • /
    • 제9권5호
    • /
    • pp.14-21
    • /
    • 2006
  • In general, the hollow jet valve, the fixed cone valve had been used for the urgency released or maintenance of the flow rate. Nowadays, the butterfly valve, the gate valve are applied in economic performance and operation maintenance more than the hollow jet valve, the fixed cone valve. However, in the case of butterfly valve, it should be required the strict application standard to the cavitation coefficient because the structural axis and disk were situated in pipe channel and the occurring the shock problem by Karman Vortex. Therefore, there were investigated the valve cavitation and accident investigation by field survey to establish the applicable extensibility of the urgency released valve as the preliminary study.

최적의 지하댐 입지 선정을 위한 효율적 평가 방법 개발 (Development of an Efficient Method to Evaluate the Optimal Location of Groundwater Dam)

  • 정진아;박은규
    • 자원환경지질
    • /
    • 제53권3호
    • /
    • pp.245-258
    • /
    • 2020
  • 본 연구에서는 다양한 지하댐 입지조건에 대한 수치 모사 결과에 인공신경망 기반 반응 표면법을 적용함으로써 지하댐 건설에 따른 지하수 저류 가능량을 객관적으로 비교 및 평가할 수 있는 예측 모델을 구축하였다. 입지조건으로 기반암 및 충적층의 수리전도도, 하도의 깊이, 하도의 지하수 유동 방향으로의 경사가 고려되었다. 다양한 시나리오를 이용한 몬테카를로 기반 수치 모사 결과를 종합한 결과, 암반층 수리전도도 및 하도의 깊이가 지하댐 저유 효율에 가장 큰 영향을 미치는 것을 확인할 수 있었으며, 하도의 지하수 유동 방향으로의 경사도가 가장 미약한 영향력을 가지는 것을 확인할 수 있었다. 이와 같은 수치 모사 결과를 기반으로 설정된 입지조건과 이의 결과를 입력 및 출력으로 하는 인공신경망 기반 예측 모델을 구축하였다. 인공신경망 기반 예측 모델의 성능 평가 결과, 모델을 통해 예측된 저유량과 실제 수치 모사를 통해 산정된 저유량 간의 상관성이 0.9 이상의 높은 수치를 보임을 확인하였다. 따라서, 본 연구를 통해 개발된 비선형 예측 모델이 지하댐 개발 대상 지역에 대한 수치 모사 수행 없이 지하댐 건설에 따른 저유량을 즉각적으로 산정하는 데 효과적으로 활용될 수 있을 것으로 판단된다. 또한, 개발된 예측 모델은 서로 다른 지역의 저유 가능량을 보다 객관적이고 효율적으로 비교하는데 이용될 수 있다. 따라서 개발된 모델은 국내 전 지역에 대하여 지하댐 개발 최적 입지를 선정하기 위한 효율적 도구로 활용될 수 있을 것으로 기대된다.

Application of hydraulic cylinder testing to determine the geotechnical properties of earth-filled dams

  • Rodriguez, Roman F.;Nicieza, Celestino G.;Gayarre, Fernando L.;Lopez, Francisco L. Ramos
    • Geomechanics and Engineering
    • /
    • 제9권4호
    • /
    • pp.483-498
    • /
    • 2015
  • This article describes a new in-situ load test called the Hydraulic Cylinder Test (HCT) and its application to determine the geotechnical properties of soil-rock mixtures. The main advantages of the test are its easy implementation, speed of execution and low-cost. This article provides a detailed description of the equipment and the test procedure, and examines a case study of its application to determine the geotechnical properties of an earth-filled dam for a tailings pond. The containment dams of the ponds are made from blocks of gypsum and marl, obtained from the excavation of the ponds, mixed in a matrix of sands and clays. The size of the rocks varies between 1 and 30 cm. The HCT is particularly useful for determining the geotechnical properties of this type of soil-rock mixture. Nine HCTs were carried out to determine its strength (c, ${\phi}$) and deformation (B, G) properties. The results obtained were validated using the Bim strength criterion, recently proposed, and some pressure meter tests carried out beforehand. The properties obtained are used to analyze the stability of the dam using computer simulations and a modification to its design is proposed.

시나리오 기반 홍수위험정보지원시스템 구축 방안 연구 (Study on Construction of Flood Hazard Information Support System based on Scenario)

  • 구신회;진경혁;정태성
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2010년 춘계학술발표회 논문집
    • /
    • pp.389-393
    • /
    • 2010
  • The Objective of this study was to develop a system for visualizing inundation area by using 1-D numerical model analyzing damage information such as inundation area, facilities, land usages, population, building, loads. In this study, we have reviewed hydraulic models to select a flood model for simulation of discharges, water depths and velocities. The study area is Namhan River from Youngwol to Paldang Dam which had a flood damage on upper and below regions of Chungju Dam by a storm event in 2006. At the first, we developed the DB system base on GIS thematic map, ortho images, cadastral maps to analyze flood damages and support decisions making. Changing the boundary conditions such as discharge at the gauging stations, flood simulations were performed and then damages were extracted from the databases information support system based on 1-D numerical hydraulic model, it is expected to be able to analyze flood damages and support a decision making for reduce flood relate damages. In the future, the system developed in this study could be applied for flood forecasting system of small scaled streams.

  • PDF

Experimental study on the tensile strength of gravelly soil with different gravel content

  • Ji, Enyue;Chen, Shengshui;Zhu, Jungao;Fu, Zhongzhi
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.271-278
    • /
    • 2019
  • In recent years, the crack accidents of earth and rockfill dams occur frequently. It is urgent to study the tensile strength and tensile failure mechanism of the gravelly soil in the core for the anti-crack design of the actual high earth core rockfill dam. Based on the self-developed uniaxial tensile test device, a series of uniaxial tensile test was carried out on gravelly soil with different gravel content. The compaction test shows a good linear relationship between the optimum water content and gravel content, and the relation curve of optimum water content versus maximum dry density can be fitting by two times polynomial. For the gravelly soil under its optimum water content and maximum dry density, as the gravel content increased from 0% to 50%, the tensile strength of specimens decreased from 122.6 kPa to 49.8 kPa linearly. The peak tensile strain and ultimate tensile strain all decrease with the increase of the gravel content. From the analysis of fracture energy, it is proved that the tensile capacity of gravelly soil decreases slightly with the increasing gravel content. In the case that the sample under the maximum dry density and the water content higher than the optimum water content, the comprehensive tensile capacity of the sample is the strongest. The relevant test results can provide support for the anti-crack design of the high earth core rockfill dam.

Application of Wavenumber-TD approach for time harmonic analysis of concrete arch dam-reservoir systems

  • Lotfi, Vahid;Zenz, Gerald
    • Coupled systems mechanics
    • /
    • 제7권3호
    • /
    • pp.353-371
    • /
    • 2018
  • The Wavenumber or more accurately Wavenumber-FD approach was initially introduced for two-dimensional dynamic analysis of concrete gravity dam-reservoir systems. The technique was formulated in the context of pure finite element programming in frequency domain. Later on, a variation of the method was proposed which was referred to as Wavenumber-TD approach suitable for time domain type of analysis. Recently, it is also shown that Wavenumber-FD approach may be applied for three-dimensional dynamic analysis of concrete arch dam-reservoir systems. In the present study, application of its variation (i.e., Wavenumber-TD approach) is investigated for three-dimensional problems. The method is initially described. Subsequently, the response of idealized Morrow Point arch dam-reservoir system is obtained by this method and its special cases (i.e., two other well-known absorbing conditions) for time harmonic excitation in stream direction. All results for various considered cases are compared against the exact response for models with different values of normalized reservoir length and reservoir base/sidewalls absorptive conditions.

DAM 수문의 최적설계에 관한 사찰 (A Study on the Optimal Design of the Gate Leaf of a Dam)

  • 최상훈;한응교;양인홍
    • 한국해양공학회지
    • /
    • 제5권1호
    • /
    • pp.64-70
    • /
    • 1991
  • The design theory of roller gate has been systematized laying more emphasis on practical formulas than theoretical ones and the design procedure of the existing gate facilites is reviewed and analyaed on economical viewpoint and safety factor. The design theory of timoshenko, the thechnical standards for hydraulic gate and penstock of Japan, and the design standards for waterworks structures of Germany are applied to the study of optimal design of a gate leaf. In this study, gate leaf which is now being operated for water control at the seadike, estuary dam and reservoir dam are adopted as a mode, and a new design method by the computer is proposed through the variation of design elements within practical ranges. As a result, safety factor and economical design can be made by using T-beams to the horizontal and vertical beam of the gate leaf instead of H-beams used in the existing seadike roller gate at Asan, and total weight of gate leaf is reduced by the present optimization.

  • PDF

모래층에서의 수류의 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of Water Flow Through Sand Layer)

  • 남궁달;김철기
    • 한국농공학회지
    • /
    • 제17권3호
    • /
    • pp.3833-3839
    • /
    • 1975
  • The object of this experiment is to find out some flow characteristics of water through sand layer, to prevent moving sands in the filters of the fill Dam, infiltration gallery, well and Deversion Weir. This experiment was accomplished with different particle Sizes of Six Samples and different hydraulic gradient. The results obtained are Summarized as follows. 1. The critical hydraulic gradients for laminar flow was found to be between 1 and 2 when the sand used had the effective diameter, D10 of between 0.18cm and 0.45cm. 2. The critical hydraulic gradients for different particle sizes of sands were varied considerably. 3. There was a negative correlation between critical hydraulic gradient and critical Velocity, and between effective particle diameter D10 and critical hydraulic gradient respectively. 4. In spite of relatively small variation of void ratio of sands used, the values of the coefficient of permeability varied considerably. There was a negative correlation between coefficient of permeability and void ratio.

  • PDF

부등류해석을 이용한 QUAL2E 모형의 개선 (Improvement of QUAL2E Model using Nonuniform Flow Analysis)

  • 김상호;최현상
    • 한국물환경학회지
    • /
    • 제22권6호
    • /
    • pp.1144-1150
    • /
    • 2006
  • Recently, as water pollution accidents in rivers have increased, there is an increased interest in water quality forecast with accurate simulation. QUAL2E model, widely used for water quality analysis, uses the same hydraulic characteristics, such as depth and velocity, in a reach. The flow of the river is changed by various hydraulic constructions or by topography in a real river channel. In this study, a hydraulic connection module is developed to consider flow variations of river channels in QUAL2E model. The module uses the simulations results of non-uniform flow of a 1-D hydraulic model such as DWOPER or HEC-RAS. The improved QUAL2E model with this module was applied to a downstream section of Paldang Dam on the Han River. The results show the variation of water quality very well in a reach where flowing vary abruptly, like the Jamsil submerged weir.