• Title/Summary/Keyword: Hydraulic Conductivity

Search Result 698, Processing Time 0.033 seconds

입도분석과 현장수리시험에 의한 수리전도도의 특성 비교

  • Ham Se-Yeong;Jeong Jae-Yeol;Lee Jeong-Hwan;Kim Hyeong-Su;Han Jeong-Sang
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.446-450
    • /
    • 2005
  • Hydraulic conductivity of unconsolidated media can be determined by aquifer tests, laboratory tests and empirical equations based on grain size analysis. Commonly, the different methods give different hydraulic conductivities. Grain size measurements were done to determine hydraulic conductivity, using 184 soil samples collected from eight boreholes in a riverbank filtration area, Daesan-Myeon, Changwon City, Korea, Pumping tests were conducted at the riverbank filtration area. The average hydraulic conductivity by the empirical relations from grain size measurements comes out around $10^{-2}m/s$, 22 to 55 times higher than by the pumping test analyses. The hydraulic conductivity obtained from the empirical equations is interpreted to have a relationship with steady-state condition while that obtained from the pumping tests is interpreted to have a relationship with unsteady-state condition. Thus, hydraulic conductivity obtained from various methods should be critically analyzed for reasonable management of groundwater development.

  • PDF

Analysis of Groundwater Flow Characterstics and Hydraulic Conductivity in Jeju Island Using Groundwater Model (지하수 모델을 이용한 제주도 지하수 유동특성 및 수리전도도 분석)

  • Kim, Min-Chul;Yang, Sung-Kee
    • Journal of Environmental Science International
    • /
    • v.28 no.12
    • /
    • pp.1157-1169
    • /
    • 2019
  • We used numerical models to reliably analyze the groundwater flow and hydraulic conductivity on Jeju Island. To increase reliability, improvements were made to model application factors such as hydraulic watershed classification, groundwater recharge calculation by precipitation, hydraulic conduction calculation using the pilot point method, and expansion of the observed groundwater level. Analysis of groundwater flow showed that the model-calculated water level was similar to the observed value. However, the Seogwi and West Jeju watersheds showed large differences in groundwater level. These areas need to be analyzed by segmenting the distribution of the hydraulic conductivity. Analyzing the groundwater flow in a sub watershed showed that groundwater flow was similar to values from equipotential lines; therefore, the reliability of the analysis results could be improved. Estimation of hydraulic conductivity distribution according to the results of the groundwater flow simulation for all areas of Jeju Island showed hydraulic conductivity > 100 m/d in the coastal area and 1 - 45 m/d in the upstream area. Notably, hydraulic conductivity was 500 m/d or above in the lowlands of the eastern area, and it was relatively high in some northern and southern areas. Such characteristics were found to be related to distribution of the equipotential lines and type of groundwater occurrence.

Sensitivity Analysis of Artificial Recharge in Consideration of Hydrogeologic Characteristics of Facility Agricultural Complex in Korea : Hydraulic Conductivity and Separation Distance from Injection Well to Pumping Well (국내 시설농업단지의 수리지질 특성을 고려한 인공함양 민감도 분석 : 수리전도도 및 주입정과 양수정의 이격거리)

  • Choi, Jung Chan;Kang, Dong-hwan
    • Journal of Environmental Science International
    • /
    • v.28 no.9
    • /
    • pp.737-749
    • /
    • 2019
  • In this study, the sensitivity analysis of hydraulic conductivity and separation distance (distance between injection well and pumping well) was analyzed by establishing a conceptual model considering the hydrogeologic characteristics of facility agricultural complex in Korea. In the conceptual model, natural characteristics (topography and geology, precipitation, hydraulic conductivity, etc.) and artificial characteristics (separation distance from injection well to pumping well, injection rate and pumping rate, etc.) is entered, and sensitivity analysis was performed 12 scenarios using a combination of hydraulic conductivity ($10^{-1}cm/sec$, $10^{-2}cm/sec$, $10^{-3}cm/sec$, $10^{-4}cm/sec$) and separation distance (10 m, 50 m, 100 m). Groundwater drawdown at the monitoring well was increased as the hydraulic conductivity decreased and the separation distance increased. From the regression analysis of groundwater drawdown as a hydraulic conductivity at the same separation distance, it was found that the groundwater level fluctuation of artificial recharge aquifer was dominantly influenced by hydraulic conductivity. In the condition that the hydraulic conductivity of artificial recharge aquifer was $10^{-2}cm/sec$ or more, the radius of influence of groundwater level was within 20 m, but In the condition that the hydraulic conductivity is $10^{-3}cm/sec$ or less, it is confirmed that the radius of influence of groundwater increases sharply as the separation distance increases.

BIO-BARRIER FORMAT10N BY BACTERlUM/FUNGUS INJECTION INTO SOILS

  • Kim, Geonha
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2001.11a
    • /
    • pp.11-16
    • /
    • 2001
  • If microorganisms are injected into porous medium such as soils along with appropriate substrate and nutrients, soil pore size and shape are changed from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced. In this research, hydraulic conductivity reduction was measured after specific bacterium or fungus was inoculated into soil pore. Hydraulic conductivity was decreased to 10 % ∼ 1 % and maintained constant while substrate was provided. Under the adverse conditions such as no substrate, chemical solution permeation, and freeze-thaw cycles, hydraulic conductivity was increased 30∼50%. Hydraulic conductivity decrease of fungus-soil mixture was faster than that of bacterium-soil mixture. Fungus-soil mixture, however, was more sensitive to the adverse conditions.

  • PDF

Prediction of Heterogeneous Hydraulic Conductivity and Contaminant Transport for the Landfill on Marine Clay (비균질성을 고려한 해성점토매립장의 수리전도도 추정과 오염이동특성)

  • 장연수;정상용
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.85-100
    • /
    • 1997
  • The heterogeneity of hydraulic conductivity of Metropolitan Waste Landfill is analized by using geostatistical methods and the contaminant transport analysis is performed by using heterogeneous hydraulic conductivity. The hydraulic conductivity data are obtained from laboratory pressurized permeability tests and the insitu, Slug test. Geostatistical methods used in this analysis are Ordinary Kriging and conditional simulation. It is concluded that the heterogeneities of hydraulic conductivity obtained from conditional simulation are greater than those from Ordinary Kriging analysis. The movement of the contaminant on the hydraulic conductivity with greater heterogeneity obtained from conditional simulation is faster than that observed in Ordinary Kriging analysis.

  • PDF

Feasibility Test for Hydraulic Conductivity Characterization of Small Basin-Scale Aquifers Based on Geostatistical Evolution Strategy Using Naturally Imposed Hydraulic Stress (자연 수리자극을 이용한 소유역 규모 대수층 수리전도도 특성화: 지구통계 진화전략 역산해석 기법의 적용 가능성 시험)

  • Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.4
    • /
    • pp.87-97
    • /
    • 2020
  • In this study, the applicability of the geostatistical evolution strategy as an inverse analysis method of estimating hydraulic properties of small-scale basin was tested. The geostatistical evolution strategy is a type of data assimilation method that can effectively estimate aquifer hydraulic conductivity by combining a global optimization model of the evolution strategy and a local optimization model of the ensemble Kalman filtering. In the applicability test, the geometry, hydraulic boundary conditions, and the distribution of groundwater monitoring wells of Hanlim-Eup were employed. On the other hand, a synthetic hydraulic conductivity distribution was generated and used as the reference property for ease of estimation quality assessment. In the estimations, two different cases were tested where, in Case I, both groundwater levels and hydraulic conductivity measurements were assumed to be available, and only the groundwater levels were available, in Case II. In both cases, the reference and estimated hydraulic conductivity fields were found to show reasonable similarity, even though the prior information for estimation was not accurate. The ability to estimate hydraulic conductivity without accurate prior information suggests that this method can be used effectively to estimate mathematical properties in real-world cases, many of which little prior information is available for the aquifer conditions.

Hydraulic Conductivity Changes Due to Subsidence Using Rock Mass Classification Parameters (암반분류변수를 이용한 침하에 따른 수리전도도 변화 해석)

  • 윤용균;김장순;김종우
    • Tunnel and Underground Space
    • /
    • v.13 no.4
    • /
    • pp.321-329
    • /
    • 2003
  • The change of strain-dependent hydraulic conductivity around mined panels due to subsidence is examined where normal and shear strains, modulus reduction ratio and joint spacing are major factors controlling the changes of hydraulic conductivity. Modulus reduction ratio and joint spacing are defined through RMR and RQD, respectively. Utilizing these two empirical parameters, changes of hydraulic conductivity values of a full gamut of rock mass conditions are determined. The change of hydraulic conductivity is not apparent in the near surface area and more significant change takes place in the area around mined panels. A zone of strong influence from the subsidence extends to a height of approximately 20m above mined panels. The shear strain does also play the role of increasing a hydraulic conductivity around mined panels. As RMR of rock mass decreases, a hydraulic conductivity is found to be increased and this means that subsidence in a poor rock with low RMR has a great effect on a hydraulic conductivity field.

Determination of the Unsaturated Hydraulic Conductivity Function (불포화 투수계수함수에 대한 연구)

  • 황창수;김태형
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.47-51
    • /
    • 2004
  • An unsaturated hydraulic conductivity function and a soil-water characteristic curve are the essential constitutive factors in studying unsaturated soils. In order to obtain the unsaturated hydraulic conductivity function, prediction functions, which are based on the soil-water characteristic curve, have been used because it is difficult to measure the unsaturated hydraulic conductivity function directly. In this study, a parameter estimation method using the flow pump technique is introduced to determine the unsaturated hydraulic conductivity function. This method provides more accurate and independent solution than previous methods for the determination of the unsaturated hydraulic conductivity function which is not subordinate to the soil-water characteristic curve or prediction models.

Estimation of saturated hydraulic conductivity of Korean weathered granite soils using a regression analysis

  • Yoon, Seok;Lee, Seung-Rae;Kim, Yun-Tae;Go, Gyu-Hyun
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.101-113
    • /
    • 2015
  • Saturated soil hydraulic conductivity is a very important soil parameter in numerous practical engineering applications, especially rainfall infiltration and slope stability problems. This parameter is difficult to measure since it is very highly sensitive to various soil conditions. There have been many analytical and empirical formulas to predict saturated soil hydraulic conductivity based on experimental data. However, there have been few studies to investigate in-situ hydraulic conductivity of weathered granite soils, which constitute the majority of soil slopes in Korea. This paper introduces an estimation method to derive saturated hydraulic conductivity of Korean weathered granite soils using in-situ experimental data which were obtained from a variety of slope areas of South Korea. A robust regression analysis was performed using different physical soil properties and an empirical solution with an $R^2$ value of 0.9193 was suggested. Besides that this research validated the proposed model by conducting in-situ saturated soil hydraulic conductivity tests in two slope areas.

A Relationship between Hydraulic Conductivity and Electrical Properties of Silty Sand on the Riverside of the Nakdong River (낙동강변 실트질 모래의 수리전도도와 전기적 물성과의 관계)

  • Kim, Soo-Dong;Park, Samgyu;Hamm, Se-Yeong;Oh, Yun-Yeong
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.39-46
    • /
    • 2014
  • Hydraulic conductivity is an important parameter, representing permeable property of the groundwater in aquifers, in the issues of groundwater development, groundwater contamination, and groundwater flow, etc. We estimated a relationship between hydraulic conductivity and electrical properties (formation factor, chargeability, and time constant) of silty sand in the laboratory. For this study, we conducted grain size analysis, constant head permeameter test, and measured electrical resistivity and spectral induced polarization of silty sand samples collected from the riverside alluvium of the Nakdong River in Nogok-ri area, Dasan-myeon, Goryeong-gun in Gyeongbook Province, Korea. In the laboratory test, we used soil samples of approximately uniform porosity with 0.5% error range, and kept the electrical resistivity of pore water with 100 ohm-m. As a result, the relationship between effective particle size and hydraulic conductivity agrees fairly well with the existing empirical formulas. Hydraulic conductivity was correlated with formation factor, chargeability, and time constant: hydraulic conductivity increased with increasing formation factor and time constant as well as with decreasing chargeability.