• Title/Summary/Keyword: Hydraulic Compressor

Search Result 25, Processing Time 0.062 seconds

Development of piston contact mechanism for radial piston pump (레이디얼 피스톤 펌프의 피스톤 접촉 메커니즘 개발)

  • Ham, Y.B.;Cha, J.G.;Kim, D.M.;Kong, T.W.;Yun, S.N.;Ahn, K.Y.;Kweon, B.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • This paper presents the experimental results of the radial piston type oil pump with new mechanism for a metal diaphragm hydrogen compressor. Generally, metal diaphragm type hydrogen compressor systems are operated by oil hydraulic power. In this system an oil compensating pump has been demanded to compensate for a leakage oil head chamber. The metal diaphragm type hydrogen compressor consists of an oil compensating pump, commonly used hydraulic piston pump and driven by main crank shaft. The radial piston type oil compensating pump with new rolling contacted piston mechanism is developed and experimented. The developed piston element of the radial piston pump consists of piston, steel ball, return spring, two check valves, eccentric cam and ball racer. In this study, designed 4 type pistons as and orifice hole. Operating characteristics and pressure ripple characteristics are tested under no load to 60bar loaded with every 20bar increasing step and pressure ripple and flow rate are experimentally investigated.

  • PDF

Friction Characteristics Between Vane and Rolling Piston in a Rotary Compressor Used for Refrigeration and Air-Conditioning Systems

  • Cho, Ihn-Sung;Baek, Il-Hyun;Oh, Seok-Hyung;Jung, Jae-Youn
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.17-21
    • /
    • 2008
  • The rolling piston type rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present study is one of studies to maximize the advantages of refrigerant compressors. In addition, because friction characteristics of the critical sliding component is essential in the design of refrigerant compressors, the present study also analyzed the lubrication characteristics of a rotary compressor used for refrigeration and air-conditioning systems. In order to measure the friction force between the vane and the rolling piston, an experimental apparatus known as the Pin-on-Disk was used. Load is applied by the hydraulic servo valve controlling the pressure of the hydraulic cylinder. The results showed that the rotational speed of the shaft, the operating temperature, and the discharge pressure significantly influenced the friction force between the vane and the rolling piston.

Hydraulic Compressor Safety Test for Hydrogen Stations (수소충전소용 유압식 압축기 안전성 시험에 관한 연구)

  • Seong, Hye-Jin;Hwang, Bom-Chan;Choi, Sung-Joon;Kim, Young-Kyu;Cho, Sung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.8-15
    • /
    • 2020
  • The government has announced its Hydrogen Economy Roadmap to strengthen global competitiveness on the hydrogen economy by focusing on hydrogen fuel cell electric vehicles and fuel cells. In this regard, the interest on the economics and safety of the infrastructure of hydrogen stations has also increased. In this study, a test bed similar to an actual hydrogen charging facility was built, and a prototype of a piston-type compressor was modeled. In this model, the piston was hydraulically compressed to progressively test leakage, leakage rate, and durability and to check for any malfunction. Moreover, the leakage rate, cylinder leak performance, and compressor operation durability were evaluated for safety; it was confirmed that there were no abnormalities. Nevertheless, an investigation of the long-term use and operating pressure of the compressor is necessary to verify the safety of developing a100-MPa domestic compressor in the future.

Friction Characteristics of the Tip Seal in a Scroll Compressor (스크롤 컴프레서 팁실의 마찰특성)

  • Jeong, Bong Soo
    • Tribology and Lubricants
    • /
    • v.30 no.6
    • /
    • pp.370-377
    • /
    • 2014
  • The basic elements in a rotary-type scroll compressor are two identical spiral scrolls containing refrigerant gas. The pressure variations in the compression pockets of a scroll compressor change the forces acting on the orbiting scroll, and these forces affect the dynamic behavior of the compression mechanism parts. To achieve high efficiency, using a self-sealing mechanism as a tip seal mechanism is very effective. Tip seals, which are placed on top of the scroll wraps, accomplish thrust sealing. This study calculates the friction force between the tip seal and the side plate of a scroll compressor using the numerical model considered in the Reynolds equation. The calculated friction force is verified by an experiment using a pin-on-disk apparatus. A hydraulic servo valve that controls the pressure of the oil hydraulic cylinder applies the normal load for the test, and a DC servo motor controls the sliding velocity of the disk. The friction force and normal load are measured by the force sensors attached to the supporting parts. The results show that the theoretical and experimental results are similar and that the friction is influenced by the viscosity of the oil and the sliding velocity of the scroll.

A Experimental Study on a Pressure Variation in the Cavity of Hydrogen Diaphragm Compressor (다이아프램식 수소압축기의 캐비티 내 압력특성 변화에 관한 실험적 연구)

  • Shin, Young-Il;Park, Hyun-Woo;Lee, Young-Jun;Song, Ju-Hun;Chang, Young-June;Jeon, Chung-Hwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.769-772
    • /
    • 2009
  • Diaphragm compressors are used for a hydrogen compression because it can achieve high gas pressure with high purity. But diaphragm's lifetime may depend on the shape of the cavity and deflection from fluctuation the pressure change, which is necessary to monitored. In this study, the gas and hydraulic oil pressure in the cavity were measured as piston speed varies for diaphragm compressor. The results show pressure change quantities were reduced and maximum pressure points are delayed as the piston moves faster. And the hydraulic pressure were elevated as gas pressure elevated. And the compression period was more faster than expansion period.

  • PDF

Development of Hydraulic Compressor for Hydrogen Station (수소스테이션용 유압 압축기 개발)

  • Cho, Sung-Min;Roh, Gyeong-gil;Yeom, Ji-woong;lee, Seung-kuk;Lyu, Sung-ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.158-163
    • /
    • 2018
  • Major producers have already built compressors since World War I and have been monopolizing all domestic and overseas markets based on the accumulated technology, and the dependency of the manufacturers over the entire industry is deepening. Therefore, it is expected that the technological gap with developed countries will be larger without development of the related technology. Therefore, it is necessary to develop a unique technology for a new type of high efficiency compression system. In this study, we present localization of Hydraulic Compressor which can meet the technical trends such as cost reduction, efficiency improvement, environmental friendliness, wide operating range, low capacity / high capacity compatibility, size reduction, easy operation and easy maintenance.

A Study on the Application Method for Hydraulic Brake System of Urban Transit System (도시철도차량 유압제동의 적용방안 연구)

  • Lee Woo-Dong;Kim Gil-Dong;Shin Jeong-Ryol
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.897-902
    • /
    • 2004
  • The hydraulic brake system is recently apply to the AGT system such merit as installation is convenient and brake force is stronger than pneumatic brake system. The hydraulic brake system consist of brake operating unit, electronic control unit, air compressor and pneumatic/hydraulic tranducer. The components of it are controlled and designed to perform the function of brake system. Therefore, This paper design and the hydraulic brake system and propose the derection of development for Urban Transit System.

  • PDF

A Study on the Application Method of Hydraulic Brake System for Advanced EMU (차세대전동차에 유압저동 적용방안 연구)

  • Lee, Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.259-261
    • /
    • 2005
  • The hydraulic brake system is recently apply to the AGT system such merit as installation is convenient and brake force is stronger than pneumatic brake system. The hydraulic brake system consist of brake operating unit, electronic control unit, air compressor and pneumatic/hydraulic tranducer. The components of it are controlled and designed to perform the function of brake system. Therefore, This paper design and the hydraulic brake system and propose the detection of development for Urban Transit System.

  • PDF

A Study on the Hydraulic Brake Application of Electrical Multiple Unit (전동차에 유압제동장치 적용방안 연구)

  • Lee Woo-Dong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.1355-1357
    • /
    • 2004
  • The hydraulic brake system is recently apply to the AGT system such merit as installation is convenient and brake force is stronger than pneumatic brake system. The hydraulic brake system consist of brake operating unit, electronic control unit, air compressor and pneumatic/hydraulic tranducer. The components of it are controlled and designed to perform the function of brake system. Therefore, This paper design and the hydraulic brake system and propose the derection of development for Urban Transit System.

  • PDF