• 제목/요약/키워드: Hydraulic Active Suspension System

검색결과 41건 처리시간 0.024초

유압식 능동 현가시스템의 개발에 관한 연구 (A study on development of hydraulic active suspension system)

  • 장성욱;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1459-1464
    • /
    • 1996
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing consumption power. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic active suspension system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

  • PDF

유압식 능동 현가시스템의 설계 및 적용에 관한 연구 (A Study on the Application and Design of Hydraulic Active Suspension System)

  • 장성욱;이진걸
    • 대한기계학회논문집A
    • /
    • 제26권4호
    • /
    • pp.683-692
    • /
    • 2002
  • The most important parameter for hydraulic active suspension system is to sustain desirable vehicle maneuvering stability and ride comfort without increasing power consumption. The performance of hydraulic active suspension system depends on damping force of body damping valve and piston damping valve. Hydraulic actuator design and damping valve parameter selection are essential and basic procedure to design hydraulic system. This paper is on computer simulation with use of mathematical model that was delivered from dynamic characteristic of hydraulic actuator, as know basic damping characteristics of hydraulic active suspension system. The aim of this paper is to select the system parameter that affect mainly hydraulic active suspension, and identify the validity on the system parameter selection.

차량 능동현가장치용 유압 제어시스템의 동적거동 해석 (Dynamic Behaviour Analysis of a Hydraulic Control System for Vehicle Active Suspension)

  • 정용길;이일영
    • 동력기계공학회지
    • /
    • 제4권1호
    • /
    • pp.51-59
    • /
    • 2000
  • Active suspension systems have been using for improving ride quality and stability for vehicles. An active suspension system is composed of a hydraulic pump, pressure control valves, hydraulic dampers, vehicle body, tires and other components. In this study, the mathematical model for the active suspension system based on the quarter car concept is derived, and a program for analysing the dynamic behaviour of the suspension system is developed. The computed results by the developed program are compared with the experimental results for confirming the reliability and usefulness of the developed program.

  • PDF

Hydraulically Actuated of Half Car Active Suspension System

  • Sam, Yahaya Md.;Osman, Johari Halim Shah
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1721-1726
    • /
    • 2004
  • The studies of the half active suspension have been performed using various suspension models. In the early days, the modeling considered the inputs to the active suspension as the linear forces. Recently, due to the development of new control theory, the forces input to the half car active suspension system has been replaced by an actual input to the hydraulic actuators. Therefore, the dynamic of the active suspension system now consists of the dynamic of half car suspension system plus the dynamic of the hydraulic actuators. This paper proposed a new modeling technique in integrating both dynamic models. The proportional integral sliding mode control technique is utilized to control the hydraulically actuated of the half car active suspension system. The performance of the half car hydraulically actuated active suspension system is simulated with a bump input. The results show that the proposed modeling technique and the proportional integral sliding mode controller are improved the ride comfort and ride handling of the half car active suspension system.

  • PDF

능동제어식 현가계의 유압 구동장치에 대한 단순화 모델 유도 (Deduction of a Simplified Model for the Hydraulic Actuator for a Low-band Type Suspension System)

  • 김동윤;홍예선;박영필
    • 한국자동차공학회논문집
    • /
    • 제2권4호
    • /
    • pp.27-38
    • /
    • 1994
  • In this paper, a simplified model of a hydraulic actuator system for a low-band type active suspension system is derived. To reduce the order of model, time constants of each chamber in hydraulic system are neglected except that of an accumulator. And the dynamics of a spool in the pressure control valve is regarded as a first-order system. The step response and the frequency response of the simplified second-order simulation model exhibit a good agreement with those of the actual system as well as those of the tenth-order simulation model. It is possible to simplify the tenth-order model to the second-order one. The low-band type active suspension model is built up by combining of a quarter car model test rig to testify the validity of the simplified model. The experimental results of suspension characteristics show that the simplified second-order hydraulic actuator model is reasonable to describe the dynamics of the actual hydraulic actuator system for a low-band type active suspension system.

  • PDF

철도차량 승차감 향상을 위한 반능동/능동 진동제어 (Semi-active and Active Vibration Control to Improve Ride Comfort in Railway Vehicle)

  • 유원희;신유정;허현무;박준혁
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.248-253
    • /
    • 2013
  • The maximum speed is one of the most important performance in high speed railway vehicle. The higher the train speed is, the worse the ride comfort is, In order to solve this problem, a semi-active or active suspension can be applied to high speed railway vehicle. The variable damper with hydraulic solenoid valve is used in the semi-active suspension. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. The MR(Magneto Rheological) damper can be considered instead of hydraulic variable damper which needs additional device, i.e. reserver tank for fluid. In the case of active suspension, hydraulic actuator or electro-mechanical one is used to suppress the carbody vibration in railway vehicle. In this study the MR damper and electro-mechanical actuator was considered in secondary suspension system of high speed railway vehicle. The dynamic analysis was performed by using 10-DOF dynamic equations of railway vehicle. The performance of the semi-active suspension and active suspension system were reviewed by using MATLAB/Simulink S/W. The vibration suppression effect of semi-active and active suspension system were investigated experimentally by using 1/5-scaled railway vehicle model.

  • PDF

차량 능동 현가 장치용 유압 액추에이터의 감쇠력 특성에 관한 연구 (A Study on the Characteristics of Damping Force in a Hydraulic Actuator for Vehicle Active Suspension System)

  • 윤영환;최명진
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.150-158
    • /
    • 2002
  • Through experimental works, the damping force vibration problem was investigated, which results from valve and surge pressure in the oil return line of the hydraulic circuit of an active suspension system in a passenger cu. Experiments were carried out under passive system, where an orifice valve was closed and non-active system, where an orifice valve was opened, using a pressure control valve controlled by solenoid. The effects of parameters of the valve overlap and accumulator on smoothing surge pressure was elucidated. It was proved that the apparent variation of damping force due to the overlap amount of pressure control valve is the most important factor to control the damping force variation. The procedure of the experimental works shows the development process of a proportional pressure control valve in the hydraulics system of an active suspension system of passenger car.

MR 댐퍼를 이용한 철도차량 승차감 반능동 제어 (Semi-Active Control for Improving Ride Comfort in Railway Vehicle by MR Damper)

  • 신유정;유원희;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.1929-1934
    • /
    • 2011
  • Recently the maximum speed becomes the most important performance in high speed train. But the speed up of train will not give the passenger good riding comfort. The semi-active suspension system by using variable damper with hydraulic solenoid valve is used to solve this problem. But the variable damper with hydraulic solenoid valve requires tank for supplying fluid. In this study, the MR(Magneto Rheological) damper was considered instead of hydraulic variable damper in order to improve riding comfort. Dynamic simulation was conducted for semi-active suspension system with MR damper was made by using Matlab-Simulink S/W. According to control strategy of MR damper for improving ride comfort in railway vehicle, The riding comfort of the railway vehicle with semi-active suspension system was analyzed and compared with conventional suspension system by using the program.

  • PDF

현가시스템용 압력제어밸브에 관한 연구 (A Study on Hydraulic Pressure Reducing Valve for Active Suspension Systems)

  • 김동원;양승현;이석원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 D
    • /
    • pp.2528-2530
    • /
    • 2005
  • In this paper, a study on the analysis and design of an electro-hydraulic pressure reducing valve for active suspension system of car is fulfilled. Also, the structurally improved direct-acting electro-hydraulic pressure reducing valve is proposed to satisfy the performance that active suspension system requires. To prove the possibility whether the proposed valve can be used for active suspension system or not, the mathematical modeling and analysis for this valve is fulfilled and the experiment of response to controlled pressure is achieved. Here we conformed the response speed to controlled pressure of the structurally improved valve changed for the better by modifying the shape of spool such as the structure which make use of the power of controlled pressure derived from the area difference between two section areas of valve spool.

  • PDF

유압계의 동특성을 고려한 능동 현가계의 합성 제어 (Hybrid Control of Active Suspension System Considering Hydraulic System Dynamics)

  • 김효준;박혁성;양현석;박영필
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.239-246
    • /
    • 1997
  • This paper presents an active suspension control algorithm to improve the suspension performance trade-offs between riding comfort and handling stability. In this paper, a hybrid control scheme is proposed, the idea of which is that sliding mode control is used for nonlinear hydraulic system and the skyhook control is applied to control the vehicle behavior. The parameter variations in hydraulic system are considered for the robust controller design. The performance of the proposed control method is evaluated by simulation and experiments based on a half car roll model which can reveal both heave and roll behavior.

  • PDF