• Title/Summary/Keyword: Hydration heat and drying shrinkage

Search Result 44, Processing Time 0.034 seconds

A Study on Creep, Drying Shrinkage, Hydration Heat Produced in Concrete Floor Plate of Steel Box Girdler Bridge (강박스 거더교 콘크리트 바닥판에 발생하는 크리프, 건조수축, 수화열에 관한 연구)

  • 강성후;박선준;김민성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.457-462
    • /
    • 2003
  • It studies the non-structural crack factors that are produced in Steel Box Girder Bridge concrete floor plate using analytical method. It mainly studies humidity and design standard of concrete strength. It used MIDAS CIVIL Ver 5.4.0, a general structure analysis program that applies drying shrinkage rate of domestic road bridge design standard and standard value of creep coefficient, CEF-FIP standard equation and ACI standard equation from the aspect of creep, drying shrinkage and hydration heat to see the effect of the two factors on concrete crack and found the following result. The analytical results of this study showed that the initial stress, which was obtained by ACI standard, exceeds the allowable tensile stress between 5 to 18 days. This result means that even if a bridge is designed and constructed according to design standard, the bridge can have cracks due to various variables such as drying shrinkage, hydration heat and creep that produce stress in slab.

  • PDF

Effect of Hydration Heat and Drying Shrinkage of Mass Concrete Using Hwangtoh Binder (황토결합재를 이용한 매스콘크리트의 수화열과 건조수축 효과)

  • Kang, Sung-Soo;Lee, Seong-Lo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.649-652
    • /
    • 2008
  • In this paper, the applicability of hwangtoh, as an alternative of cement paste, is investigated for the solution of internal heat and shrinkage caused by the hydration of cement paste. Several small-sized specimens of hwangtoh and ordinary portland concrete(OPC) were compared as to compressive strength, heat of hydration, and shrinkage strain. Moreover, the applicability of mass structure was reviewed through the test of large-size specimens. The 28-day compressive strength of hwangtoh concrete(HBC), ranged 18 to 33 Mpa, can reach that of ordinary portland concrete. Not only the maximin internal temperature of HBC was read about 1/4 of OPC as it is cured, but also its drying shrinkage decreased as lower as 50% of OPC starting from 60 days. Therefore, hwangtoh binder is more favorable than cement one in the view of hydration heat and shrinkage under the construction of mass structures.

  • PDF

Influence on Compressive Strength and Drying Shrinkage of Concrete with Urea-Water Soluble Sulfur Admixture (요소-수용성 유황 혼화제가 콘크리트 압축강도 및 건조수축에 미치는 영향)

  • Park, Jae Kyu;Han, Sang Hoon;Hong, Ki Nam;Cho, Yong In;Chai, Yuzhe
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.5
    • /
    • pp.74-81
    • /
    • 2016
  • This paper presents an experimental study to ivestigate mechanical property of concretes according to addition of urea and urea-water soluble sulfur contents. Urea was added at 5~20% replacement by weight of water, and water soluble sulfur was used at 2%, 4% replacement by weight of cement. The setting times, the hydration heat, the compressive strength, and the drying shrinkage, were measured on concretes with single and binary admixtures. From the test result, it was confirmed that the hydration heat of urea-water soluble sulfur was lower than that of normal concrete by $10.1^{\circ}C$, and the drying shrinkage of urea-water soluble sulfur concrete was more excellent than normal concrete. In the case of urea of 5%, Compressive strength were improved with an increase of water soluble sulfur contents. The urea-water soluble sulfur used in this research can be used as improvement materials for drying shrinkage and compressive strength.

A Study of Properties of Drying Shrinkage and Creep of Concrete Incorporating Hwangtoh and Blast Furnace Slag (황토와 고로슬래그를 첨가한 콘크리트의 건조수축 및 크리프 특성에 관한 연구)

  • Kang, Hong-Ki;Yang, Keun-Hyeok;Lee, Young-Ho;Hwang, Hey-Zoo;Chung, Heon-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.612-615
    • /
    • 2004
  • The objective of this experimental study was to understand inelastic strain of concrete incorporating hwangtoh or combination of hwangtoh and slag. Main variables were replacement level of admixtures, hwangtoh and slag. We studied the properties of concrete such as heat of hydration, drying shrinkage and creep according to the replacement level of hwangtoh and slag. Test results showed that the heat of hydration of concrete decrease with increasing hwangtoh and slag replacement. Also drying shrinkage and creep of concrete increase with increasing hwangtoh replacement.

  • PDF

An Analysis of the Crack Cause of Concrete Faced Rockfill Dam (사력댐 차수벽 콘크리트의 균열원인 분석)

  • Chae, Young-Suk;Lee, Myeong-Gu
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.6
    • /
    • pp.133-137
    • /
    • 2012
  • Cracking may be used to help predict the cause of deterioration of concrete, since in many cases characteristic cracking patterns are produced. The purpose of this paper is an analysis of the crack cause occurred in concrete faced rockfill dams. We analyzed the concrete placement methods, cracking pattern, the inspection of crack depth by the ultrasonic pulse velocity method, and the measurement of heat of hydration, environmental condition, and so on. In this study, the crack cause of concrete faced rockfill dam is the wrong method of concrete placement, high temperature difference by cement of heat of hydration and concrete of drying shrinkage.

Lateral Behavior of Abutment Piles in Full Integral Bridge During 7 Days in Response to Hydration Heat and Drying Shrinkage (수화열과 건조수축에 의한 7일간의 완전 일체식 교량 교대 말뚝기초의 횡방향 거동)

  • ;;;;Thomas A. Bolte
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.127-149
    • /
    • 2003
  • The bridge tested was 3 spans 90m-long PSC beam concrete bridge with a stub-type abutment which had a skew of 60$^{\circ}$ about the axis of bridge. A cement concrete was placed at the superstructural slab of the bridge. Inclinometers and straingauges were installed at piles as well. During 7 days-curing of superstructural slab, the pile behavior in response to hydration heat and drying shrinkage of the slab was monitored. Then monitored values were compared with the horizontal movement obtained from the HACOM program and the calculated lateral behavior obtained from the nonlinear p-y curves of pile. As a result, lateral behavior of H-piles by the field measurement occurred due to the influence of hydration heat and drying shrinkage obtained during curing of superstructural concrete. The lateral displacements by hydration heat and drying shrinkage were 2.2mmand 1.4mm respectively. It was observed as well that the inflection point of lateral displacement of pile was shown at 1.3m down from footing base. It means that the horizontal movement of stub abutment did not behave as the fixed head condition of a pile but behave as a similar condition. The measured bending stress did not show the same behavior as the fixed head condition of pile but showed a similar condition. The increment of maximum bending stress obtained from the nonlinear p-y curves of pile was about 300(kgf/$\textrm{km}^2$) and was 2 times larger than measured values regardless of installation places of straingauges. Meanwhile, lateral load, maximum lateral displacement, maximum bending stress and maximum bending moment of pile showed a linear behavior as curing of superstructural concrete slab.

Shrinkage Properties of High Early Strength Fiber Reinforced Concrete (초기강도 섬유보강 콘크리트의 수축특성)

  • 원종필;김현호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.5
    • /
    • pp.124-131
    • /
    • 2001
  • The shrinkage properties of high early strength concrete were investigated. One of the method to control microcrack and crack development due to restrained shrinkage is to reinforce concrete with randomly distributed fibers. Regulated-set cement and two different types of fiber were adopted. The experiments for heat of hydration, drying and autogenous shrinkage were conducted. The desirable resistance of high early strength fiber reinforced concrete to restrained shrinkage microcracking was achieved. These results indicate that use of fiber in high early strength concrete plays an important role in control of crack development due to restrained shrinkage.

  • PDF

Estimation of Early-Age Cracking of Reinforced Concrete Walls (철근콘크리트 벽체의 초기 균열 거동에 대한 연구)

  • Kwak Hyo-Gyoung;Ha Soo-Jun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.898-905
    • /
    • 2006
  • In the present paper, for a quantitative assessment of early-age cracking in an RC wall, an improved analytical model is proposed. First of all, a three-dimensional finite element model for the analysis of stresses due to hydration heat and differential drying shrinkage is introduced. A discrete steel element derived using the equivalent nodal force concept is used to simulate reinforcing steels, embedded in a concrete matrix. In advance, to quantitatively calculate the cracking potential, an analytical model that can estimate the post-cracking behavior in an RC tension member is proposed Subsequent comparisons. of analytical results with test results verify that the combined use of both the finite element model for the stress analysis as well as the analytical model for the estimation of the post-cracking behavior in an RC tension member make it possible to accurately predict the cracking ,behavior of RC walls.

  • PDF

A Parametric Study on the Reason and Control of Crack during the Construction of Pier in Urban Transit (도시철도 교각의 시공중 균열발생 원인과 제어방안을 위한 매개변수 연구)

  • Park, Seong-Kyu
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.6
    • /
    • pp.555-561
    • /
    • 2011
  • This paper is designed to propose methods to both analyze and control the reasons for cracks appearing during the construction of piers. For this aim, a numerical analysis was performed to identify the properties of crack which resulted from heat of hydration and differential drying shrinkage with the key influence factors considered. The results show that the thermal cracks occurred within a few days, and the drying shrinkage cracks within a few weeks. Meanwhile, settlement shrinkage cracks occurred within a few hours. Discussing the control methods based on the time of the cracks appearing, quality control, reduction of the unit quantity of cement, and the preservation of moisture on the surface are proposed as the realistic and effective methods for preventing settlement cracks, thermal cracks, and drying shrinkage cracks respectively.

An Experimental Study on the Effect if Fiber Reinforced on CFRD Face Slab Concrere (CFRD 차수벽콘크리트에서의 섬유보강효과에 관한 실험적 연구)

  • 최세진;임정열;김완영;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.122-125
    • /
    • 2000
  • CFRD (Concrete Faced Rockfill Dam) face slab concrete has a much capability to occur crack due to drying shrinkage, hydration heat and bas compaction etc. Because of crack of concrete induce structural problem and decrease durability of concrete, it is need to reduce crack of concrete. This is an experimental study to analyze the effect of fiber reinforced on CFRD face slab concrete. for this purpose, it was investigated and analyzed the engineering properties of plain concrete and polypropylene fiber reinforced concrete (PFRC) according to test result ; the test include slump, air content, compressive strength, tensile strength, drying shrinkage and permeability etc. As the results, it was found permeability and drying shrinkage of PFRC less than that of plain concrete.

  • PDF