• Title/Summary/Keyword: Hydration experiment

Search Result 185, Processing Time 0.029 seconds

Material Properties and Shrinkage Crack Resistance of Concrete Produced with Fluorine-Silicate Hybrid Type Crack Reducing Agent (불소-실리카 복합형 균열저감제가 첨가된 콘크리트의 재료 특성과 수축균열 저항성)

  • Lee, Man-Ik;Park, Jong-Hwa;Nam, Jae-Hyun;Kim, Do-Su;Kim, Jae-On
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.553-558
    • /
    • 2006
  • In this study, fluorine-silicate hybrid type crack reducing agent(FS) consisted of fluorine and silicate compounds applied to concrete mix(specification : 25-30-18) between 0.5% and 2.0% at intervals of 0.5% based on cement weight. Experiments for material properties of concrete such as slump, air content and bleeding with elapsed time were performed. Experiment and elucidation for shrinkage crack resistance as well as adiabatic hydration temperature were also carried out. It was appeared that FS addition contributed to lower bleeding and hydration temperature without disturbance of fresh properties of concrete such as slump and air content compared to non-added concrete. Especially, shrinkage crack resistance of concrete resulted from plastic and drying shrinkage could be effectively reduced by the addition of FS ranging from 1.0% to 1.5%.

A Study on Field Application of 150MPa Ultra Strength Surface-Exposed Concrete (150MPa급 초고강도 노출콘크리트의 현장적용에 관한 연구)

  • Kong, Tae-Woong;Lee, Soo-Hyung;Jang, Jae-Hwan;Lee, Han-Baek
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.989-992
    • /
    • 2008
  • In this paper, we are presenting a case that integrates ultra high strength concrete(150MPa) with surface-exposed concrete. Ahead of the field application, we carried out laboratory experiment and B/P Test for a basic property of concrete(slump flow, air content, 50cm flow time, elapse time change and compression strength) and productivity. The next, we conducted Mock-up Test using simulation specimen to evaluate infilling, surface-finishing and hydration heat of concrete. We had satisfactory results for a basic property and hydration heat of concrete. However at the time of field application, it was occurred rupture of formwork because of high lateral pressure of concrete, and then formwork was reinforced and case-in-place time was adjusted. And regardless of low and high frequency vibration, it occurred to surface-pockmark. In case that applies ultra high strength concrete to surface-exposed concrete, we estimate that it is important of systematic management and improvement of construction.

  • PDF

A Basic Study to Use Recycled Limestone Powder as a Mixture for Secondary Concrete Products (재활용 석회석 분말을 콘크리트 2차제품 혼합재로 이용하기 위한 기초적 연구)

  • Jung, Jae-Ho
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.413-418
    • /
    • 2021
  • In this study, as a basic study to use recycled limestone powder as a secondary product mixture for concrete, it was found that the compressive and flexural strengths were equal to or slightly improved compared to Plain up to 10% and 20% of the RLP mixing ratio, but the strength was rather decreased at 30% mixing. As a result of the heat of hydration experiment, as the RLP mixing rate increased, the heat of hydration decreased, and the elapsed time of the maximum heat was also delayed. As a result of the drying shrinkage test, as the fine powder RLP filled the internal pores of the cement mortar, the drying shrinkage decreased as the mixing rate increased. The compressive strength, water absorption rate, and compressive strength after freezing and thawing of the concrete block mixed with RLP 20% all satisfied the group standard criteria of the Korea Concrete Industry Cooperative Federation, confirming the possibility of use as a mixed material.

High purity C3A synthesis method and effect of CaCO3 on C3A initial hydration reaction (고순도 C3A 합성 방법 및 CaCO3가 C3A 초기 수화 반응에 미치는 영향)

  • Hye-Jin Yu;Woo Sung Yum
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.244-249
    • /
    • 2023
  • In this study, various experimental parameters were investigated for high-purity C3A synthesis. As a results of experiment, it was verified that the calcined temperature was the most important parameter for the synthesis of high-purity C3A. In addition, more synthesis time was needed when large amount of C3A synthesis to achieve high-purity. Meanwhile, the C3A blended with CaCO3 showed different reaction products compared to normal cement because C15 and C30 had monocarbocaluminate as a reaction product at early stage of hydration. Furthermore, the production amount and formation rate of monocarboaluminate formation was different varying with the CaCO3 a mounts.

p-Toluenesulfonic Acid 촉매를 이용한 1,4-Sorbitan 제조

  • Im, Geun-Gil;Ryu, Hwa-Won;Lee, Jong-Il;Park, Don-Hui;Kim, In-Hong;Lee, Gwang-Yeon;Kim, Hae-Seong
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.894-897
    • /
    • 2001
  • This experiment was to determine the optimum conditions for D-sorbitol cyclization in the presence of p-toluenesulfonic acid(p-TSA) as acid catalyst before the esterification of sorbitol with fatty acids. The optimum conditions of hydration reaction to obtain maximum yield of 1,4-sorbitan were at $130^{\circ}C$, 200mmHg reduced pressure, after l50min and l%(w/w) p-TSA. In this condition the yield of 1,4-sorbitan was approximately 90%.

  • PDF

Water temperature effects on the early strength characteristics of antiwashout underwater concrete (수중온도가 수중불분리성 콘크리트의 초기상도에 미치는 영향에 관한 실험적 연구)

  • 이승훈;정재홍;안태송;원종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10a
    • /
    • pp.324-329
    • /
    • 1998
  • Recently the use of the underwater concrete with the antiwashout admixture is increased considerably. When we intend to apply it to the field, we must consider the water temperature effect. In this study, we investigate the properties of setting time, early strength, hydration temperature history and core strength with the antiwashout underwater concrete in the water temperature 8$^{\circ}C$, 14$^{\circ}C$ and 22$^{\circ}C$ respectively. As a result of experiment, as the water temperature is decreasing, setting time is delayed twice of three times and early strength is lower from 10% to 50%. Therefore to compensate the decrease of the early strength, we used the accelerator and investigated the concrete properties.

  • PDF

A Comparison of Three Dimensional Structures of Insulin, Proinsulin and Preproinsulin Using Computer Aided Molecular Modeling

  • Oh, Mi-Na;Mok, Hun;Lim, Yoong-Ho
    • Applied Biological Chemistry
    • /
    • v.41 no.8
    • /
    • pp.568-571
    • /
    • 1998
  • The conformations of human insulin precursors, proinsulin and preproinsulin, are described in terms of molecular dynamics simulations. Despite the presence of the C-peptide and/or the signal peptide, molecular dynamics calculations utilizing the hydration shell model over a period of 500 ps indicate that the native conformations of the A and B chains are well conserved in both cases. These results further support the NMR spectroscopy results that the C-peptide is relatively disordered and does not influence the overall conformation of the native structure. The robustness of the native structure as demonstrated by experiment and simulation will permit future protein engineering applications, whereby the expression or purification yields can be improved upon sequence modification of the C-peptide and/or the signal peptide.

  • PDF

An Experimental Study on the Characteristics of Compressive Strength in Cement Mortar under High Temperature conditions in an Early Age (초기 고온이력이 시멘트 모르터의 강도발현에 미치는 영향에 관한 연구)

  • Kim Young-Joo;Choi Maeng-Ki;Gong Min-Ho;Park Hee-Gon;Kim Kwang-Ki;Jung Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.45-48
    • /
    • 2005
  • This study is basic experiment for estimating influence of strength by curing temperature of concrete's heat of hydration and estimate relationship of compressive strength development by initial curing temperature factor, and then asume temperature factor which influence compressive strength development and for showing basic document of qualify control. According to the result of cement mortar by the curing temperature factor high-curing temperature shows high strength on 3 day compare with low curing-temperature, shows higher strength than the piece of high curing temperature.

  • PDF

Study on the Coefficient of Air Convection for Concrete Mix of Nuclear Power Plant (원전 배합 콘크리트의 외기대류계수에 관한 연구)

  • Lee, Yun;Kim, Jin-Keun;Choi, Myoung-Sung;Song, Young-Chul;Woo, Sang-Kyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.148-151
    • /
    • 2004
  • The hardening of concrete after setting is accompanied with nonlinear temperature distribution caused by development of hydration heat of cement. Especially at early ages, this nonlinear distribution has a large influence on the tensile cracking. As a result, in order to predict the exact temperature distribution in concrete structures it is required to examine thermal properties of concrete. In this study, the coefficient of air convection for concrete mix of nuclear power plant, which presents thermal transfer between surface of concrete and air, was experimentally investigated with variables such as velocity of wind and types of form. The coefficient of air convection obtained from experiment increases with velocity of wind, and its dependance on wind velocity is varied with types of form. This tendency is due to a combined heat transfer system of conduction through form and convection to air. The coefficient of air convection for concrete mix of nuclear power plant obtained from this study was well agreed with the existing models.

  • PDF

An Experimental Study on the Effects of High temperature Hysteresis on Concrete Strength Development (고온이력이 콘크리트의 강도발현에 미치는 영향에 관한 실험적 연구)

  • Kim, Hak-Young;Min, Hong-Jun;Jang, Hyung-Jun;Gong, Min-Ho;An, Moo-Young;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.433-436
    • /
    • 2006
  • This study is basic experiment for estimating influence of strength by curing temperature of concrete's heat of hydration and estimate relationship of compressive strength development by initial curing temperature factor, and then asume temperature factor which influence compressive strength development and for showing basic document of quality control. According to the result of managerial test pieces by the curing temperature factor high-curing temperature shows high strength on 3 day compare with low curing-temperature, shows higher strength than the piece of high curing temperature.

  • PDF