• Title/Summary/Keyword: Hydration Reaction

Search Result 362, Processing Time 0.035 seconds

A Study on Heat Storage System Using Calcined Dolomite - Numerical Analysis of Heat Transfer in Calcined Dolomite Hydration Pocked Bed - (소성Dolomite 수화물계의 축열시스템에 관한 연구 - 소성Dolomite 수화반응층의 전열해석 -)

  • Park, Young-Hae;Kim, Jong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.1
    • /
    • pp.9-21
    • /
    • 2002
  • To develope chemical heat pump using available energy sources, solar heat and other kinds of waste thermal energy, we have studied the heat transfer rate in cylindrical bed reactor packed with calcined Dolomite. Two dimensional (radial and circumferential) Partial differential equations, concerning heat and mass transfer in packed bed of calcined Dolomite, are solved numerically to describe the characteristics of the reaction of calcined Dolomite and heat transfer. The results obtained by numerical analysis about two dimensional profiles of temperature and conversion of reactant in the packed bed reactor and the amount of exothermic heat released from the reactor are follows. It was found that all of calcined Dolomite packed bed kept the reaction temperature of about 750K throughout the entire part of the bed, immediately after the steam was introduced exothermic reaction of hydration was proceeded from the packed bed inpu to output and from wall side to center. The rate of thermochemical reaction depends on the temperature and concentration and it is also governed by the boundary conditions and heat transfer rate in the particle packed bed.

Hydration Reaction of Non-Sintering Cement using Waste Gypsum and Waste Lime with Activators (폐석고 및 폐석회를 자극제로 이용한 비소성 시멘트의 수화반응)

  • Mun, Kyoung-Ju;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.232-235
    • /
    • 2004
  • This study aims to manufacture non-sintering cement(NSC) by adding phosphogypsum(PG) and waste lime(WL) to granulated blast furnace slag(GBFS) as sulfate and alkali activators. This study also investigates the basic physical properties and hydration reaction of NSC, and evaluates its reusing possibility as construction material. Results obtained from this study have shown that GBFS was affected by $So_4^{2-}$ in waste PG and stimuli under wet condition, left slag components, created Ettringite and CSH gels, and eventually started being hydrated. These hydrated creations formed dense structures like CSH based on Ettringite and contributed in allowing the mortar to reveal high strength.

  • PDF

A Kinetic Study on the Hydration Process of Barley Kernels with Various Polishing Yields (도정수율별 보리의 수화공정(水和工程)에 관(關)한 속도론적(速度論的) 연구(硏究))

  • Mok, Chul-Kyoon;Lee, Hyun-Yu;Nam, Young-Jung;Min, Byong-Yong
    • Korean Journal of Food Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.136-140
    • /
    • 1983
  • The hydration characteristics of barley kernels with various polishing yields were investigated at temperatures of $20-60^{\circ}C$ and their sorption kinetics were studied. The moisture gain in initial stage of hydration was directly proportional to square root of hydration time and there was a break point at the moisture gain of 0.45-0.55g $H_2O/g$ solid. The hydration rate was great in order of polishing yield of 50, 70, 95, 90 and 100%, and increased with increasing hydration temperature. The diffusivity of water into barley kernels followed Arrhenius equation, and the activation energies in hydration reaction of polished barley were ranged from 6.9 to 9.5 Kcal/mole and that of non-polished one was 11.6Kcal/mole.

  • PDF

Characteristics of Reduction of Hydration Heat through Utilization of Blast Furnace Slag in the Cement-based Landfill Soil Liner System (고로슬래그를 이용한 폐기물 매립지 고화토차수층의 수화열 저감특성)

  • Cho, Jae-Beom;Hyun, Jae-Hyuk;Lee, Jong-Deuk;Park, Joung-Ku
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1327-1331
    • /
    • 2005
  • This study was to investigate the reduction of hydration heat by utilizing industrial by-products such as BFS(Blast Furnace Slag). DM(Dredged Mud) was used by parent soil and Ordinary portland cement was used by cementing material. Additive added to reduce the heat of hydration was BFS. From the results of experiment, hydration heat was decreased in accordance with the addition of BFS. The reason was that surface of BFS coated with aluminosulfate. Initial uniaxial strength was low, neither was not long term uniaxial strength. It was concluded that silica rich layer($H_2SiO_4^{4-}$) in solid phase early in the reaction of hydration was difficultly moved in liquid phase due to the increase of ZP(Zeta Potential). However, the ZP in the later hydration was decreased due to the acceleration of mobility of silica rich layer($H_2SiO_4^{4-}$). Therefore, long term physical properties such as uniaxial strength revealed.

Oxidation of Ethanol in the Gas Phase with Alcohol Oxidase and Alcohol Dehydrogenase (Alcohol Oxidase와 Alcohol Dehydrogenase를 이용한 기상에서의 Ethanol의 산화반응)

  • 박현규;장호남김동옥
    • KSBB Journal
    • /
    • v.9 no.3
    • /
    • pp.239-245
    • /
    • 1994
  • The effects of reaction temperature and the level of hydration(water activity) were studied for gas phase reactions of alcohol oxidase and alcohol dehydrogenase immobilized on DEAE-cellulose and controlled pore glass(CPG). Optimum reaction temperature zone of gas phase reaction was similar to that of aqueous phase reaction. The activity of alcohol oxidase increased dramatically and the stability decreased when the water activity was increased from 0.3 to 0.8. The apparent activation energies of the gas phase reaction decreased approaching the values obtained in the aqueous phase reaction as the water activity increased. In the both cases of alcohol oxidase and alcohol dehydrogenase, the rate constants of the gas phase reaction were lower than those of aqueous phase reaction by two orders of magnitude and these results could be correlated to the vapor-liquid equilibrium data of the substrate, ethanol.

  • PDF

Hydration Properties of Low Carbon type Low Heat Blended Cement (무기질 자극제를 사용한 탄소배출 저감형 저발열형 혼합시멘트의 수화특성에 관한 연구)

  • Choi, Sung-Woo;Ryu, Deuk-Hyun;Kim, Hun-Sang;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.13 no.3
    • /
    • pp.218-226
    • /
    • 2013
  • Of construction materials, cement and steel are the representative material that carbon dioxide. to reduce carbon emissions in the use of these materials The purpose of this study is low heat type blended cement, which is manufactured using a amount of cement than ordinary low heat blended cement. Low heat blended cement, mixing ratio of 10%, was investigated hydration properties and adiabatic temperature of concrete. The study in order to activate the reaction mineral admixture, a separate source of CaO and $SO_3$ areneeded. gypsum and lime, it expected amount of cement, low-carbon low-heat blended cement could reduce the hydration heat concrete than currentlyused low heat blended cement.

Effect of Silicate Ions on the Hydration of 4CaO · Al2O3 · Fe2O3 with Gypsum

  • You, Kwang-Suk;Ahn, Ji-Whan;Kim, Hwan;Goto, Seishi
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.9
    • /
    • pp.642-646
    • /
    • 2004
  • Na$_2$Si$_2$O$_{5}$ added to the solution affects the hydration of 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$ with calcium sulfate. The reaction between 4CaOㆍAl$_2$O$_3$ Fe$_2$O$_3$and CaSO$_4$ㆍ 2$H_2O$ decrease with increasing amount of Na$_2$Si$_2$O$_{5}$ in solution, owing to low hydraulic reactivity of 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$by the adsorption of silicate ions on the surface of 4CaOㆍAl$_2$O$_3$ㆍ Fe$_2$O$_3$ particles. The dissolution rate of 4CaOㆍAl$_2$O$_3$ㆍ Fe$_2$O$_3$ particles deceased with the increase of the concentration of silicate ion in solution. When the 4CaOㆍAl$_2$O$_3$ㆍFe$_2$O$_3$ particles was hydrated in gypsum - Na$_2$Si$_2$O$_{5}$ solution, the hydration was retarded and the rate could not discriminate between formation of ettringite and that of monosulfate, and it stopped in high concentration of silicate ions. However, silicate ion did not any effect on the dissolution rate of gypsum.ypsum.

Influence of Limestone Powder on the Hydration of slag cement (슬래그 시메\ulcorner의 수화반응에 미치는 석회석 분말의 영향)

  • 이민석;윤철현;최현국
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.85-88
    • /
    • 1999
  • We tested the limestone powder as a filler powder for the effective use of slag cement. Hydration process were investigated by measuring the thermal differential analysis(DTA), compressive strength, XRD patterns, calorimeter of slag cement-limestone powder paste prepared by mixing limestone powder-slag cement. The results obtained in this study, there were no significant difference between the cases of adding up to 5% limestone powder, but the reaction time was accelerated. Also the compressive strength was increased for adding up to 5% limestone powder. The min hydrated paste products were Ca(OH)2 and calcium silicate hydrates. In the case of mixed limestone powder peak appear tricalcium carboaluminate hydrate in the sample of 7 days hydration.

  • PDF

Effect of Micro Organic-inorganic Complex on the Hydration of Portland Cement(II) (Mcchanical and rheological properties of PVA-montmorillonite complex cemenrt system) (마이크로 유기-무기 복합체가 포오틀랜드 시멘트 수화에 미치는 영향(II) (PVA-점토 복합체-시멘트 계의 기계적 유동학적 특징))

  • 김창은;김배연;최진호;이형복
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.6
    • /
    • pp.15-20
    • /
    • 1985
  • In the course of cement hydration it was found that the addition of polyvinyl alcohol(contracted as PVA. here after) only in the cement paste could more influence on the set-retardation the depression of heat evol-ution rate than that of montmorillonit only or PVA-montmorillonie intercalation complex (PMIC) due to the effective adsorption of PVA on cement particles. The improved mechanical strength by addition of montmorillonite and PMIC was observed remarkably up to 0.05wt% due to the decrease of macro-pores caused by lowed viscosity or the acceleration of hydration reaction.

  • PDF

An Integrated System to Predict Early-Age Properties and Durability Performance of Concrete Structures

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.465-466
    • /
    • 2010
  • In this paper, an integrated system is proposed which can evaluate both the early-age properties and durability performance of concrete structures. This integrated system starts with a hydration model which considers both Portland cement hydration and chemical reactions of supplementary cementing materials (SCM). Based on the degree of hydration of cement and mineral admixtures, the amount of reaction products, the early age heat evolution, chemically bound water, porosity, the early age short-term mechanical behaviors, shrinkage and early-age creep are evaluated as a function of curing age and curing conditions. Furthermore, the durability aspect, such as carbonation of blended concrete and chloride attack, are evaluated considering both the material properties and surrounding environments. The prediction results are verified through experimental results.

  • PDF