• Title/Summary/Keyword: Hybrid-switching DC-AC converter

Search Result 11, Processing Time 0.019 seconds

Prototype Development of 3-Phase 3.3kV/220V 6kVA Modular Semiconductor Transformer (3상 3.3kV/220V 6kVA 모듈형 반도체 변압기의 프로토타입 개발)

  • Kim, Jae-Hyuk;Kim, Do-Hyun;Lee, Byung-Kwon;Han, Byung-Moon;Lee, Jun-Young;Choi, Nam-Sup
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1678-1687
    • /
    • 2013
  • This paper describes a prototype of 3-phase 3.3kV/220V 6kVA modular semiconductor transformer developed in the lab for feasibility study. The developed prototype is composed of three single-phase units coupled in Y-connection. Each single-phase unit with a rating of 1.9kV/127V 2kVA consists of a high-voltage high-frequency resonant AC-DC converter, a low-voltage hybrid-switching DC-DC converter, and a low-voltage hybrid-switching DC-AC converter. Also each single-phase unit has two DSP controllers to control converter operation and to acquire monitoring data. Monitoring system was developed based on LabView by using CAN communication link between the DSP controller and PC. Through various experimental analyses it was verified that the prototype operates with proper performance under normal and sag condition. The system efficiency can be improved by adopting optimal design and replacing the IGBT switch with the SiC MOSFET switch. The developed prototype confirms a possibility to build a commercial high-voltage high-power semiconductor transformer by increasing the number of series-connected converter modules in high-voltage side and improving the performance of switching element.

Analysis of Switching Surge Over-voltage in AC/DC Hybrid Transmission Lines (AC/DC 병가선로의 개폐서지 과전압 해석)

  • Yoo, Seong-Soo;Shin, Koo-Yong;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.459-466
    • /
    • 2022
  • Switching surges are a common type of phenomenon that occur on any sort of power system network. These are more pronounced on long transmission lines and in high voltage converter stations. At AC/DC hybrid transmission lines, the insulation coordination of such lines is mainly dictated by the peak level of switching surges, the most dangerous of which include three phase line energization and AC/DC converter station. The power system structure consist of AC/DC hybrid transmission lines which is combination of AC 765kV and ±500kV HVDC 1 bipole system for contingency analysis. The power system under study and its components are simulated using EMTDC software package, the effects of the various AC/DC mixing power lines are reviewed. The developed models of EMTDC conversion lines based on combination of AC/DC system are simulated and the characteristics of switching surge over-voltage from its results are discussed.

Analysis of Hybrid Converter with Wide Voltage Range Operation

  • Lin, Bor-Ren
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1099-1107
    • /
    • 2019
  • A soft switching converter with wide voltage range operation is investigated in this paper. A series resonant converter is implemented to achieve a high circuit efficiency with soft switching characteristics on power switches and rectifier diodes. To improve the weakness of the narrow voltage range in LLC converters, an alternating current (ac) power switch is used on the primary side to select a half-bridge or full-bridge resonant circuit to implement 4:1 voltage range operation. On the secondary-side, another ac power switch is adopted to select a full-wave rectifier or voltage-doubler rectifier to achiever an additional 2:1 output voltage range. Therefore, the proposed resonant converter has the capacity for 8:1 (320V~40V) wide output voltage operation. A single-stage hybrid resonant converter is employed in the study circuit instead of a two-stage dc converter to achiever wide voltage range operation. As a result, the study converter has better converter efficiency. The theoretical analysis and circuit characteristics are verified by experiments with a prototype circuit.

A Bridgeless Single Stage AC-DC Converter for Wireless Power Charging System (무선전력충전시스템을 위한 브리지리스 단일전력단 교류-직류 컨버터)

  • Kim, Min-Ji;Yoo, Sang-Jae;Yoo, Kyung-Jong;Woo, Jung-Won;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.1
    • /
    • pp.44-53
    • /
    • 2020
  • A bridgeless single-stage AC-DC converter for wireless power charging systems is proposed. This converter is composed of a PFC stage and a three-level hybrid DC-DC stage. The proposed converter can control the wide output voltage (200-450 VDC) by the variable link voltage and the pulse-width voltage applied to the primary resonant circuit due to the phase-shifted modulation at a fixed switching frequency. Moreover, the input power factor and the total harmonic distortion can be improved by using the proposed converter. A 1 kW prototype was fabricated and validated through experimental results and analysis.

Three Level Single-Phase Single Stage AC/DC Resonant Converter With A Wide Output Operating Voltage Range (넓은 출력 전압제어범위를 갖는 3레벨 단상 단일전력단 AC/DC 컨버터)

  • Marius, Takongmo;Kim, Min-Ji;Oh, Jae-Sung;Lee, Gang-Woo;Kim, Eun-Soo;Hwang, In-Gab
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.6
    • /
    • pp.424-432
    • /
    • 2018
  • This study presents a single-phase single-stage three-level AC/DC converter with a wide controllable output voltage. The proposed AC/DC converter is designed to extend the application of e-mobility, such as electric vehicles. The single-stage converter integrates a PFC converter and a three-level DC/DC converter, operates at a fixed frequency, and provides a wide controllable output voltage (approximately 200-430Vdc) with high efficiencies over a wide load range. In addition, the input boost inductors operate in a discontinuous mode to improve the input power factor. The switching devices operate with ZVS, and the converter's THD is small, especially at full load. The feasibility of the proposed converter is verified by the experimental results of a 1.5 kW prototype.

Design and Analysis of Universal Power Converter for Hybrid Solar and Thermoelectric Generators

  • Sathiyanathan, M.;Jaganathan, S.;Josephine, R.L.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.220-233
    • /
    • 2019
  • This work aims to study and analyze the various operating modes of universal power converter which is powered by solar and thermoelectric generators. The proposed converter is operated in a DC-DC (buck or boost mode) and DC-AC (single phase) inverter with high efficiency. DC power sources, such as solar photovoltaic (SPV) panels, thermoelectric generators (TEGs), and Li-ion battery, are selected as input to the proposed converter according to the nominal output voltage available/generated by these sources. The mode of selection and output power regulation are achieved via control of the metal-oxide semiconductor field-effect transistor (MOSFET) switches in the converter through the modified stepped perturb and observe (MSPO) algorithm. The MSPO duty cycle control algorithm effectively converts the unregulated DC power from the SPV/TEG into regulated DC for storing energy in a Li-ion battery or directly driving a DC load. In this work, the proposed power sources and converter are mathematically modelled using the Scilab-Xcos Simulink tool. The hardware prototype is designed for 200 W rating with a dsPIC30F4011 digital controller. The various output parameters, such as voltage ripple, current ripple, switching losses, and converter efficiency, are analyzed, and the proposed converter with a control circuit operates the converter closely at 97% efficiency.

Development of 50kW High Efficiency Fast Charger with Wide Charging Voltage Range (넓은 충전전압 범위를 갖는 50kW급 고효율 급속충전기 개발)

  • Park, Jun-Sung;Kim, Min-Jae;Jeong, Heon-Soo;Kim, Joo-Ha;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.267-274
    • /
    • 2016
  • In this study, a fast charger for electric vehicle with wide charging voltage range is proposed. To achieve high efficiency, three-level topologies are employed for the AC-DC and DC-DC converters. Given that the output range of the DC-DC converter in fast chargers is quite wide, the circulating current of conventional three-level converter will increase under low voltage condition. The proposed hybrid switching method mitigates this issue. When a coupled inductor is used on the output side, the circulating current is further reduced, and the switches $S_2$, $S_3$, $S_6$, and $S_7$ achieve turning-off under the ZCS condition. Experimental results from a 50 kW prototype are provided to validate the proposed charger, and a rated efficiency of 95.9% is obtained.

Analysis of Switching Noise Time Characteristic and Estimation of Frequency Spectrum (스위칭 잡음의 시간 특성 분석을 통한 주파수 특성 예측)

  • Choi, Han-Ol;Ryu, Seung-Real;Kim, Eun-Ha;Park, Dong-Chul;Lee, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.5
    • /
    • pp.640-645
    • /
    • 2012
  • DC-DC converter and DC-AC inverter in a hybrid electric vehicle (HEV) generate the switching noise. It may be generated by the reverse recovery operation of the power diode in the switching circuit of the converter or the inverter. The shape of the reverse recovery region may be determined by both reverse time and recovery time in the diode. So, in this paper, the frequency spectrum of switching noise was estimated by the shape of the reverse recovery region and compared with the measured results. It shows that the meaningful region of the frequency spectrum is directly related with the reverse time.

Simple Technique Reducing Leakage Current for H-Bridge Converter in Transformerless Photovoltaic Generation

  • Kot, Radoslaw;Stynski, Sebastian;Stepien, Krzysztof;Zaleski, Jaroslaw;Malinowski, Mariusz
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.153-162
    • /
    • 2016
  • Given their structural arrangement, photovoltaic (PV) modules exhibit parasitic capacitance, which creates a path for high-frequency current during zero-state switching of the converter in transformerless systems. This current has to be limited to ensure safety and electromagnetic compatibility. Many solutions that can minimize or completely avoid this phenomenon, are available. However, most of these solutions are patented because they rely on specific and often complex converter topologies. This study aims to solve this problem by introducing a solution based on a classic converter topology with an appropriate modulation technique and passive filtering. A 5.5 kW single-phase residential PV system that consists of DC-DC boost stage and DC-AC H-bridge converter is considered. Control schemes for both converter stages are presented. An overview of existing modulation techniques for H-bridge converter is provided, and a modification of hybrid modulation is proposed. A system prototype is built for the experimental verification. As shown in the study, with simple filtering and proper selection of switching states, achieving low leakage current level is possible while maintaining high converter efficiency and required energy quality.

Development of 50kW High Efficiency Modular Fast Charger for Both EV and NEV (EV와 NEV 겸용 50kW급 고효율 모듈형 급속충전기 개발)

  • Kim, Min-Jae;Kim, Yeon-Woo;Prabowo, Yos;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.373-380
    • /
    • 2016
  • In this paper, a 50-kW high-efficiency modular fast charger for both electric vehicle (EV) and neighborhood electric vehicle (NEV) is proposed. The proposed fast charger consists of five 10-kW modules to achieve fault tolerance, ease of thermal management, and reduce component stress. Three-level topologies for both AC-DC and DC-DC converters are employed to use 600V MOSFET, resulting in ease of component selection and increase in switching frequency. The proposed three-level DC-DC converter with coupled inductor and its hybrid switching method can reduce the circulating current under wide output voltage range. A 50-kW prototype of the proposed fast charger was developed and tested to verify the validity of the proposed concept. Experimental results show that the proposed fast charger achieves a rated efficiency of 95.2% and a THD of less than 3%.