• Title/Summary/Keyword: Hybrid-power

Search Result 2,335, Processing Time 0.025 seconds

Power System Congestion Problems using Hybrid Control of PST and Real Power Generation (위상변환기와 발전출력 하이브리드 제어를 이용한 계통 혼잡처리 방안)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.223-225
    • /
    • 2005
  • This paper presents a scheme to solve the congestion problem using hybrid control with phase-shifting transformer(PST) and power generation in power systems. A good design of PST and power generation control can improve total transfer capability(TTC) in interconnected systems. This paper deals with an application of optimization technique for TTC calculation. The optimization method is used to maximize power flow of tic line subject to security constraints such as voltage magnitude and real power flow. The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

  • PDF

A Power Circuit Improvement of the Hybrid System Using Phase Controlled Rectifier and PWM Converter for Magnet Load Power Supply (자석-부하 전원장치를 위한 위상제어 정류기와 PWM 컨버터를 사용한 복합구조 시스템의 전력회로 개선)

  • Kang, Min-Gu;Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.3
    • /
    • pp.231-235
    • /
    • 2008
  • Thyristor rectifiers are still the preferred choice for large magnet power supplies. However, large harmonic voltages, resulting in large current ripple, and slow dynamic response are major drawbacks of these converters. Joos presented a topology and a control technique for a hybrid large-power high-precision magnet power supply in 1996. The system consists of a phase controlled rectifier (PCR) connected in series with a high-frequency PWM converter. This paper improves the power circuit of the PWM converter using interphase transformer. Simulation result proves effect of the proposed system.

A Dynamic Performance Study of an HVDC System using a Hybrid Simulator

  • Kim Chan-Ki;Yang Byeong-Mo;Lee Hahk-Sung
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.319-328
    • /
    • 2005
  • This paper deals with the development of a new type of simulator for the study of the dynamic performance of an HVDC scheme. The new simulator uses a digital model of the power equipment and an analogue model of the existing HVDC controller. This simulator is used to study the dynamic performance of the Cheju - Haenam HVDC system and to verify the control characteristics of the HVDC system. The paper discusses the simulator development requirements and criteria. The paper provides guidelines for the development of the simulator and presents the results of the simulation studies.

Obstacle Avoidance Algorithm of Hybrid Wheeled and Legged Mobile Robot Based on Low-Power Walking (복합 바퀴-다리 이동형 로봇의 저전력 보행 기반 장애물 회피 알고리즘)

  • Jeong, Dong-Hyuk;Lee, Bo-Hoon;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.4
    • /
    • pp.448-453
    • /
    • 2012
  • There are many researches to develop robots that improve its mobility to adapt in various uneven environments. In the paper, a hybrid wheeled and legged mobile robot is designed and a obstacle avoidance algorithm is proposed based on low power walking using LRF(Laser Range Finder). In order to stabilize the robot's motion and reduce energy consumption, we implement a low-power walking algorithm through comparison of the current value of each motors and correction of posture balance. A low-power obstacle avoidance algorithm is proposed by using LRF sensor. We improve walking stability by distributing power consumption and reduce energy consumption by selecting a shortest navigation path of the robot. The proposed methods are verified through walking and navigation experiments with the developed hybrid robot.

Dual-Band Unequal Power Divider based on CRLH Transmission Line (CRLH 전송선로를 기반으로 한 이중대역 비대칭 전력 분배기)

  • Yoo, Jae-Hyun;Kim, Young;Yoon, Young-Chul
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.909-915
    • /
    • 2010
  • In this paper, the unequal power divider based on CRLH (Composite Right/Left-Handed) transmission line with dual-band characteristic is proposed. They consist of dual-band branch line hybrid coupler, the connection between input and isolation port of hybrid coupler and ${\lambda}/4$ impedance transformer. When the transmission line between input and isolation port of hybrid coupler is asymmetrical connected, the divider is obtained the output results of the equal phase and unequal power dividing ratio. The simulation results of the divider represent the power ratio of 0 dB ~ 20 dB. To validate a function of divider, the hybrid coupler and transformer with 880 MHz and 1850 MHz is implemented. As a result, the proposed unequal divider obtains the power ratio of 3.2 dB ~ 8.8 dB at 880 MHz and 2.5 dB ~ 14.0 dB at 1850 MHz.

A Study on the Structure of Hybrid Magnetic Gear with Armature Type Rotor (전기자 형태의 회전자를 갖는 하이브리드 마그네틱 기어의 구조에 관한 연구)

  • Gim, Chan-Seung;Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1235-1242
    • /
    • 2018
  • When the wind speed changes rapidly, the wind turbine is stopped for the safety of the power system and the mechanical system. At that moment, the wind turbine gearbox is damaged and broken due to the contact load of the gearbox. In addition, the problems such as increasing frictional heat and deteriorate of the brake occur, because the power of the blades is transmitted directly to the brakes. This paper proposes a hybrid magnetic gear shape that solves the problem caused by the contact of the mechanical gear, which is the power transmission device of the wind power generation system, and the power cutoff system. The shape of the hybrid magnetic gearsuitable for the wind power generation system is derived through the torque and loss analysis according to the shape of the hybrid magnetic gear by using the two dimensional finite analysis method.

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

Study on OTEC for the Production of Electric Power and Desalinated Water (전력 및 담수생산을 위한 해양온도차발전에 대한 연구)

  • Park, Sung-Seek;Kim, Nam-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.124-130
    • /
    • 2010
  • Ocean Thermal Energy Conversion(OTEC) power plants have been examined as a viable option for supplying clean energy. This paper evaluated the thermodynamic performance of the OTEC Power system for the production of electric power and desalinated water. The results show that newly developed fluids such as R32, R125, R143a, and R410A that do not cause stratospheric ozone layer depletion perform as well as R22 and ammonia. Overall cycle efficiency of open cycle is the lowest value of 3.01% because about 10% of the gross power is used for pumping out non-condensable gas. Also, the hybrid cycle is an attempt to combine the best features and avoid the worst features of the open and closed cycles. The overall cycle efficiency of hybrid cycle is 3.44% and the amount of desalinated water is 0.0619 kg/s.

Frequency Control of in Hybrid Wind Power System using Flywheel Energy Storage System

  • Lee, Jeong-Phil;Kim, Han-Guen
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.229-234
    • /
    • 2014
  • In this paper, a design problem of the flywheel energy storage system controller using genetic algorithm (GA) is investigated for a frequency control of the wind diesel hybrid power generation system in an isolated power system. In order to select parameters of the FESS controller, two performance indexes are used. We evaluated a frequency control effect for the wind diesel hybrid power system according to change of the weighted values of a performance index. To verify performance of the FESS controller according to the weighted value of the performance index, the frequency domain analysis using a singular value bode diagram and the dynamic simulations for various weighted values of performance index were performed. To verify control performance of the designed FESS controller, the eigenvalue analysis and the dynamic simulations were performed. The control characteristics with the two designed FESS controller were compared with that of the conventional pitch controller. The simulation results showed that the FESS controller provided better dynamic responses in comparison with the conventional controller.

Hybrid Type X-Ray Generator Using EDLC for Fluoroscopy X-Ray System (EDLC를 이용한 X선 투시촬영장치용 하이브리드 X선 제너레이터)

  • Seo, Young-Min;Hong, Soon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.89-98
    • /
    • 2014
  • A diagnostic fluoroscopy X-ray system uses a 32kW or greater X-ray generator for obtaining real-time moving images and high-resolution images. Fluoroscopy X-ray systems have to use a high-capacity AC power source to perform long-time low-power fluoroscopy and short-time high-power spot exposure. In this paper, we propose a hybrid type X-ray generator for fluoroscopy X-ray system which can perform fluoroscopy and spot exposure with a low-capacity AC power source and an energy storage device. The characteristics of energy storage devices are compared and each energy storage device is modelled to equivalent circuit. And the characteristics of available energy are analyzed as a function of output voltage and power. A 32kW class hybrid X-ray generator with EDLC as an energy storage device for fluoroscopy X-ray system was constructed, and its validity was verified by means of simulations and experiments.