• Title/Summary/Keyword: Hybrid-GA Algorithm

Search Result 168, Processing Time 0.021 seconds

Fuzzy Model Identification Using A mGA Hybrid Scheme (mGA의 혼합된 구조를 사용한 퍼지모델 동정)

  • Lee, Yeun-Woo;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.507-509
    • /
    • 1999
  • In this paper, we propose a new fuzzy model identification method that can yield a successful fuzzy rule base for fundamental approximations. The method in this paper uses a set of input-output data and is based on a hybrid messy genetic algorithm (mGA) with a fine-tuning scheme. The mGA processes variable-length strings, while standard GAs work with a fixed-length coding scheme. For successfully identifying a complex nonlinear system, we first use the mGA, which coarsely optimizes the structure and the parameters of the fuzzy inference system, and then the gradient descent method which tine tunes the identified fuzzy model. In order to demonstrate the superiority and efficiency of the proposed scheme, we finally show its application to a nonlinear approximation.

  • PDF

Application of Genetic Algorithm to Hybrid Fuzzy Inference Engine

  • Park, Sae-hie;Chung, Sun-tae;Jeon, Hong-tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.2 no.3
    • /
    • pp.58-67
    • /
    • 1992
  • This paper presents a method on applying Genetric Algorithms(GA), which is a well-know high performance optimizing algorithm, to construct the self-organizing fuzzy logic controller. Fuzzy logic controller considered in this paper utilized Sugeno's hybrid inference method. which has an advantage of simple defuzzification process in the inference engine. Genetic algorithm is used to find the iptimal parameters in the FLC. The proposed approach will be demonstrated using 2 d. o. f robot manipulator to verify its effectiveness.

  • PDF

Evaluating Reverse Logistics Networks with Centralized Centers : Hybrid Genetic Algorithm Approach (집중형센터를 가진 역물류네트워크 평가 : 혼합형 유전알고리즘 접근법)

  • Yun, YoungSu
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.4
    • /
    • pp.55-79
    • /
    • 2013
  • In this paper, we propose a hybrid genetic algorithm (HGA) approach to effectively solve the reverse logistics network with centralized centers (RLNCC). For the proposed HGA approach, genetic algorithm (GA) is used as a main algorithm. For implementing GA, a new bit-string representation scheme using 0 and 1 values is suggested, which can easily make initial population of GA. As genetic operators, the elitist strategy in enlarged sampling space developed by Gen and Chang (1997), a new two-point crossover operator, and a new random mutation operator are used for selection, crossover and mutation, respectively. For hybrid concept of GA, an iterative hill climbing method (IHCM) developed by Michalewicz (1994) is inserted into HGA search loop. The IHCM is one of local search techniques and precisely explores the space converged by GA search. The RLNCC is composed of collection centers, remanufacturing centers, redistribution centers, and secondary markets in reverse logistics networks. Of the centers and secondary markets, only one collection center, remanufacturing center, redistribution center, and secondary market should be opened in reverse logistics networks. Some assumptions are considered for effectively implementing the RLNCC The RLNCC is represented by a mixed integer programming (MIP) model using indexes, parameters and decision variables. The objective function of the MIP model is to minimize the total cost which is consisted of transportation cost, fixed cost, and handling cost. The transportation cost is obtained by transporting the returned products between each centers and secondary markets. The fixed cost is calculated by opening or closing decision at each center and secondary markets. That is, if there are three collection centers (the opening costs of collection center 1 2, and 3 are 10.5, 12.1, 8.9, respectively), and the collection center 1 is opened and the remainders are all closed, then the fixed cost is 10.5. The handling cost means the cost of treating the products returned from customers at each center and secondary markets which are opened at each RLNCC stage. The RLNCC is solved by the proposed HGA approach. In numerical experiment, the proposed HGA and a conventional competing approach is compared with each other using various measures of performance. For the conventional competing approach, the GA approach by Yun (2013) is used. The GA approach has not any local search technique such as the IHCM proposed the HGA approach. As measures of performance, CPU time, optimal solution, and optimal setting are used. Two types of the RLNCC with different numbers of customers, collection centers, remanufacturing centers, redistribution centers and secondary markets are presented for comparing the performances of the HGA and GA approaches. The MIP models using the two types of the RLNCC are programmed by Visual Basic Version 6.0, and the computer implementing environment is the IBM compatible PC with 3.06Ghz CPU speed and 1GB RAM on Windows XP. The parameters used in the HGA and GA approaches are that the total number of generations is 10,000, population size 20, crossover rate 0.5, mutation rate 0.1, and the search range for the IHCM is 2.0. Total 20 iterations are made for eliminating the randomness of the searches of the HGA and GA approaches. With performance comparisons, network representations by opening/closing decision, and convergence processes using two types of the RLNCCs, the experimental result shows that the HGA has significantly better performance in terms of the optimal solution than the GA, though the GA is slightly quicker than the HGA in terms of the CPU time. Finally, it has been proved that the proposed HGA approach is more efficient than conventional GA approach in two types of the RLNCC since the former has a GA search process as well as a local search process for additional search scheme, while the latter has a GA search process alone. For a future study, much more large-sized RLNCCs will be tested for robustness of our approach.

A Biologically Inspired Intelligent PID Controller Tuning for AVR Systems

  • Kim Dong-Hwa;Cho Jae-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.5
    • /
    • pp.624-636
    • /
    • 2006
  • This paper proposes a hybrid approach involving Genetic Algorithm (GA) and Bacterial Foraging (BF) for tuning the PID controller of an AVR. Recently the social foraging behavior of E. coli bacteria has been used to solve optimization problems. We first illustrate the proposed method using four test functions and the performance of the algorithm is studied with an emphasis on mutation, crossover, variation of step sizes, chemotactic steps, and the life time of the bacteria. Further, the proposed algorithm is used for tuning the PID controller of an AVR. Simulation results are very encouraging and this approach provides us a novel hybrid model based on foraging behavior with a possible new connection between evolutionary forces in social foraging and distributed non-gradient optimization algorithm design for global optimization over noisy surfaces.

Hybrid Priority-based Genetic Algorithm for Multi-stage Reverse Logistics Network

  • Lee, Jeong-Eun;Gen, Mitsuo;Rhee, Kyong-Gu
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.1
    • /
    • pp.14-21
    • /
    • 2009
  • We formulate a mathematical model of remanufacturing system as multi-stage reverse Logistics Network Problem (mrLNP) with minimizing the total costs for reverse logistics shipping cost and inventory holding cost at disassembly centers and processing centers over finite planning horizons. For solving this problem, in the 1st and the 2nd stages, we propose a Genetic Algorithm (GA) with priority-based encoding method combined with a new crossover operator called as Weight Mapping Crossover (WMX). A heuristic approach is applied in the 3rd stage where parts are transported from some processing centers to one manufacturer. Computer simulations show the effectiveness and efficiency of our approach. In numerical experiments, the results of the proposed method are better than pnGA (Prufer number-based GA).

Hybrid Genetic Algorithms with Conditional Local Search

  • Yun, Young-Su;Seo, Seung-Lock;Kim, Jong-Hwan;Chiung Moon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.183-186
    • /
    • 2003
  • Hybrid genetic algorithms (HGAs) have been studied as various ways. These HGAs usually use both the global search property of genetic algorithm (GA) and the local search one of local search techniques. One of the general types, when constructing HGAs, is to incorporate a local search technique into GA loop, and then the local search technique is repeated as many iteration number as the loop. This paper proposes a new HGA with a conditional local search technique (c-HGA) that does not be repeated as many iteration number as GA loop. For effectiveness of the proposed c-HGA, a conventional HGA and GA are also suggested, and then these algorithms are compared with each other in numerical examples,

  • PDF

A Study on Face Recognition using a Hybrid GA-BP Algorithm (혼합된 GA-BP 알고리즘을 이용한 얼굴 인식 연구)

  • Jeon, Ho-Sang;Namgung, Jae-Chan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.2
    • /
    • pp.552-557
    • /
    • 2000
  • In the paper, we proposed a face recognition method that uses GA-BP(Genetic Algorithm-Back propagation Network) that optimizes initial parameters such as bias values or weights. Each pixel in the picture is used for input of the neuralnetwork. The initial weights of neural network is consist of fixed-point real values and converted to bit string on purpose of using the individuals that arte expressed in the Genetic Algorithm. For the fitness value, we defined the value that shows the lowest error of neural network, which is evaluated using newly defined adaptive re-learning operator and built the optimized and most advanced neural network. Then we made experiments on the face recognition. In comparison with learning convergence speed, the proposed algorithm shows faster convergence speed than solo executed back propagation algorithm and provides better performance, about 2.9% in proposed method than solo executed back propagation algorithm.

  • PDF

Prediction of unconfined compressive strength ahead of tunnel face using measurement-while-drilling data based on hybrid genetic algorithm

  • Liu, Jiankang;Luan, Hengjie;Zhang, Yuanchao;Sakaguchi, Osamu;Jiang, Yujing
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.81-95
    • /
    • 2020
  • Measurement of the unconfined compressive strength (UCS) of the rock is critical to assess the quality of the rock mass ahead of a tunnel face. In this study, extensive field studies have been conducted along 3,885 m of the new Nagasaki tunnel in Japan. To predict UCS, a hybrid model of artificial neural network (ANN) based on genetic algorithm (GA) optimization was developed. A total of 1350 datasets, including six parameters of the Measurement-While- Drilling data and the UCS were considered as input and output parameters respectively. The multiple linear regression (MLR) and the ANN were employed to develop contrast models. The results reveal that the developed GA-ANN hybrid model can predict UCS with higher performance than the ANN and MLR models. This study is of great significance for accurately and effectively evaluating the quality of rock masses in tunnel engineering.

Study of Integrated Production-Distribution Planning Using Simulation and Genetic Algorithm in Supply Chain Network (공급사슬네트워크에서 시뮬레이션과 유전알고리즘을 이용한 통합생산분배계획에 대한 연구)

  • Lim, Seok-Jin
    • Journal of the Korea Safety Management & Science
    • /
    • v.22 no.4
    • /
    • pp.65-74
    • /
    • 2020
  • Many of companies have made significant improvements for globalization and competitive business environment The supply chain management has received many attentions in the area of that business environment. The purpose of this study is to generate realistic production and distribution planning in the supply chain network. The planning model determines the best schedule using operation sequences and routing to deliver. To solve the problem a hybrid approach involving a genetic algorithm (GA) and computer simulation is proposed. This proposed approach is for: (1) selecting the best machine for each operation, (2) deciding the sequence of operation to product and route to deliver, and (3) minimizing the completion time for each order. This study developed mathematical model for production, distribution, production-distribution and proposed GA-Simulation solution procedure. The results of computational experiments for a simple example of the supply chain network are given and discussed to validate the proposed approach. It has been shown that the hybrid approach is powerful for complex production and distribution planning in the manufacturing supply chain network. The proposed approach can be used to generate realistic production and distribution planning considering stochastic natures in the actual supply chain and support decision making for companies.

Hybrid Genetic Algorithm for Facility Layout Problems with Unequal Area and Fixed Shapes (고정된 형태와 크기가 다른 설비의 배치를 위한 혼합 유전자 알고리듬)

  • Lee, Moon-Hwan;Lee, Young-Hae;Jeong, Joo-Gi
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.1
    • /
    • pp.54-60
    • /
    • 2001
  • In this paper, a shape-based block layout (SBL) approach is presented to solve the facility layout problem with unequal-area and fixed shapes. The SBL approach employs hybrid genetic algorithm (Hybrid-GA) to find a good solution and the concept of bay structure is used. In the typical facility layout problem with unequal area and fixed shapes, the given geometric constraints of unequal-area and fixed shapes are mostly approximated to original shape by aspect ratio. Thus, the layout results require extensive manual revision to create practical layouts and it produces irregular building shapes and too much unusable spaces. Experimental results show that a SBL model is able to produce better solution and to create more practical layouts than those of existing approaches.

  • PDF