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A Biologically Inspired Intelligent PID Controller Tuning
for AVR Systems

Dong Hwa Kim and Jae Hoon Cho

Abstract: This paper proposes a hybrid approach involving Genetic Algorithm (GA) and
Bacterial Foraging (BF) for tuning the PID controller of an AVR. Recently the social foraging
behavior of E. coli bacteria has been used to solve optimization problems. We first illustrate the
proposed method using four test functions and the performance of the algorithm is studied with
an emphasis on mutation, crossover, variation of step sizes, chemotactic steps, and the life time
of the bacteria. Further, the proposed algorithm is used for tuning the PID controller of an AVR.
Simulation results are very encouraging and this approach provides us a novel hybrid model
based on foraging behavior with a possible new connection between evolutionary forces in social
foraging and distributed non-gradient optimization algorithm design for global optimization over

noisy surfaces.

Keywords: Bacterial foraging optimization, genetic algorithm, hybrid system, optimal algorithm.

1. INTRODUCTION

In the last decade, Genetic Algorithm (GA) based
approaches have received increased attention from the
engineers dealing with problems that could not be
solved using conventional problem solving techniques
[1-7]. A typical task of a GA in this context is to find
the best values of a predefined set of free parameters
associated with either a process model or a control
vector. One of the active areas of research in GA
approaches is for system identification [8-12]. A
recent survey of evolutionary algorithms for the
evaluation of improved learning algorithm and control
system engineering can be found in [8,12,13]. GA has
also been used to optimize nonlinear systems. Among
them, a large amount of research is focused on the
design of fuzzy controllers using evolutionary
algorithm approaches. GAs could be used for
developing the knowledge base about the controlled
process in the form of linguistic rules and the fine
tuning of fuzzy membership function [13].

A possible solution to a specific problem can be
encoded as an individual (or a chromosome), which
consists of group of genes. Each individual represents
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a point in the search space and a possible solution to
the problem can be formulated. A population consists
of a finite number of individuals and each individual
is decided by an evaluating mechanism to obtain its
fitness value. Using this fitness value and genetic
operators, a new population is generated iteratively,
and that is referred to as a generation. The GA uses
the basic reproduction operators such as crossover and
mutation to produce the genetic composition of a
population. The crossover operator produces two
offspring’s (new candidate solutions) by means of
recombining the information from two parents. As
mutation operation is a random alteration of some
gene values in an individual, the allele of each gene is
a candidate for mutation, and its function is
determined by the mutation probability. Many efforts
for the enhancement of traditional GAs have been
proposed [14-16]. Among them, one category focuses
on modifying the structure of the population or on the
individual’s role [11]. Some examples are distributed
GA [11], cellular GA [7] and symbiotic GA. Another
category is focused on modification/efficient control
of the basic operations, such as crossover or mutation,
of traditional GAs [17].

On the other hand, as natural selection tends to
eliminate animals with poor foraging strategies
through methods for locating, handling, and ingesting
food, and to favor the propagation of genes of those
animals that have successful foraging strategies, they
are more likely to apply reproductive success to have
an optimal solution [18,19]. After many generations,
poor foraging strategies are either eliminated or
shaped into good ones. Logically, such evolutionary
principles have led scientists in the field of foraging
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theory to hypothesize that it is appropriate to model
the activity of foraging as an optimization process.
Since a foraging animal takes actions to maximize the
energy obtained per unit time spent foraging,
considering all the constraints presented by its own
physiology such as, sensing and cognitive capabilities
and environment (e.g., density of prey, risks from
predators, and physical characteristics of the search
area), evolution could lead to optimization and
essentially could be applied to complex problem
solving. These optimization models could provide a
social foraging environment where groups of
parameters communicate cooperatively for finding
solutions to engineering problems.

Section 2 gives a brief literature overview of the
area of bacterial foraging followed by the proposed
approach based on BA (Bacterial Foraging) and GA
(Genetic Algorithm). The proposed algorithm is
validated using four test functions in Section 3 and the
algorithm is illustrated for PID controller tuning in
Section 4. Some conclusions are provided at the end.

2. HYBRID SYSTEM CONSISTING OF
GENETIC ALGORITHM AND BACTERIA
FORAGING

2.1. Genetic algorithms

In nature, evolution is mostly determined by natural
selection or different individuals competing for
resources in the environment. Superior individuals are
more likely to survive and propagate their genetic
material. The encoding for genetic information
(genome) is done in a way that admits asexual
reproduction which results in offspring that are
genetically identical to the parent. Sexual reproduc-
tion allows some exchange and re-ordering of
chromosomes, producing offspring that contain a
combination of information from each parent. This is
the recombination operation, which is often referred to
as crossover because of the way strands of
chromosomes cross over during the exchange. The
diversity in the population is achieved by mutation.
Genetic algorithms are ubiquitous nowadays, having
been successfully applied to numerous problems from
different domains, including optimization, automatic
programming, machine learning, operations research,
bioinformatics, and social systems [20]. A population
of candidate solutions (for the optimization task to be
solved) is initialized. New solutions are created by
applying reproduction operators (mutation and/or
crossover). The fitness (how good the solutions are) of
the resulting solutions are evaluated and suitable
selection strategy is then applied to determine which
solutions will be maintained into the next generation.
The procedure is then iterated.

2.2. Bacteria foraging algorithm

Search and optimal foraging decision-making of
animals can be used for solving engineering problems.
To perform social foraging an animal needs
communication capabilities and it gains advantages
that can exploit essentially the sensing capabilities of
the group, so that the group can gang-up on larger
prey, individuals can obtain protection from predators
while in a group, and in a certain sense the group can
forage a type of collective intelligence.

2.2.1 Over view of chemotactic behavior of E. coli.
This paper considers the foraging behavior of E.
coli, which is a common type of bacteria [18,19]. Its
behavior and movement comes from a set of six rigid
spinning (100-200 r.p.s) flagella, each driven as a
biological motor. An E. coli bacterium alternates
through running and tumbling. Running speed is 10—
20um/s, but they are unable to swim straight. We

modeled the chemotactic actions of the bacteria as
follows:

In a neutral medium, if it tumbles and runs in an
alternating fashion, its action could be similar to
search.

If swimming up a nutrient gradient (or out of
noxious substances), or swimming for a longer period
of time (climb up nutrient gradient or down noxious
gradient), its behavior seeks increasingly favorable
environments.

If swimming down a nutrient gradient (or up
noxious substance gradient), then the search action is
avoiding unfavorable environments.

Subsequently, it can climb up nutrient hills and at
the same time avoid noxious substances. The sensors
it needs for optimal resolution are receptor proteins
that are very sensitive and possess high gain, That is, a
small change in the concentration of nutrients can
cause a significant change in behavior. This is
probably the best-understood sensory and decision-
making system in biology.

Mutations in E. coli affect the reproductive
efficiency at different temperatures, and occur at a rate
of about 107 per gene per generation. E. coli
occasionally engages in a conjugation that affects the
characteristics of a population of bacteria. There are
many types of taxis that are used in bacteria such as,
aerotaxis (attracted to oxygen), phototaxis (light),
thermotaxis (temperature), magnetotaxis (magnetic
lines of flux) and some bacteria can change their
shape and number of flagella based on the medium to
reconfigure in order to ensure efficient foraging in a
variety of media. Bacteria can form intricate stable
spatio-temporal patterns in certain semisolid nutrient
substances and they can radially eat their way through
a medium if placed together initially at its center.
Moreover, under certain conditions, they will secrete
cell-to-cell attractant signals in order to group and
protect each other.
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2.2.2 Optimization function for the Hybrid GA-BF
algorithm

The main goal of the Hybrid GA-BF based algorithm

is to apply and find the minimum of P(g), #<R",

not in the gradient VP(#). Here, when ¢ is the

position of a bacterium, P(¢) is an attractant-

repellant profile. That is, where nutrients and noxious
substances are located, P < 0, P=0, P > 0 represent
the presence of nutrients. A neutral medium, and the
presence of noxious substances, respectively can be
defined by

H(j,k,D)={p"(j,k,D){x=12,..,N}. €]

(1) represents the position of each member in the
population of the N bacteria at the jth chemotactic step,
kth reproduction step, and /th elimination-dispersal
event. Let P(x, j, &, /) denote the cost at the location of

the ith bacterium ¢*(i, j,k) € R”, and

¢ =(i+1,j,k) =47 (i, j.k) + C((x)p(3), )

so that C(x)>0 is the size of the step taken in the
random direction specified by the tumble. If at

¢*(i+1,/,k) the cost P(x, j+1, k, [) is lower than at

¢" (i, j,k), then another chemotactic step of size C(x)

in this same direction will be taken and repeated up to
a maximum number of steps Ns. Ns is the length of
the lifetime of the bacteria measured by the number of

chemotactic steps. Function PC’ (@), i=1,2,..,S, to

model the cell-to-cell signaling via an attractant and a
repellant is represented by [17-19,21]

N .
P(p)=) P 3)

i=1
‘: Lattrace  €Xp {_é‘attract Z (¢ Jj ¢; )2 ]il

N
i=

2

1
i=1

N
i \2
+2|:_Krepeelarnt exp{_gattract2(¢j —¢]l) \H’
where ¢=[¢l,...,¢p]r is a point on the optimization
domain, Lattract is the depth of the attractant released
by the cell and J,,,,., is a measure of the width of
the attractant signal. K =L ipaer 15 the height

repellant attrac
of the repellant effect magnitude, and &, is a
measure of the width of the repellant. The expression
of P.(¢) means that its value does not depend on the
nutrient concentration at position ¢. That is, a

bacterium with high nutrient concentration secretes
stronger attractant than one with low nutrient
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concentration. The model uses the function P, (¢4)
to represent the environment-dependent cell-to-cell

signaling as

Py (@) =exp(T - P(9))P.(9), (3a)

where T is a tunable parameter. By considering
minimization of P(i, j, k, [ )+ P, (¢i( j,k,l)), the

cells try to find nutrients, avoid noxious substances,
and at the same time try to move toward other cells,
but not too close to them. The function

P, (¢i (J.k,1 )) implies that, with M being constant,
the smaller the P(¢), the larger the P,(¢ ) and thus

the stronger attraction, which is intuitively reasonable.
In tuning the parameter M, it is normally found that,
when M is very large, P, (@) is much larger than

J(¢), and thus the profile of the search space is

dominated by the chemical attractant secreted by E.
coli.
On the other hand, if T is very small, then Par (¢ )

is much smaller than P(¢), and it is the effect of the
nutrients that dominates. In Py, (¢ ), the scaling factor
of P. (¢ ) is given as in exponential form.

The algorithm to search optimal
parameters is described as follows:
Step 1: Initialize parameters n, N, NC, NS, Nre, Ned,

Ped, C(i)(i=1,2,....N), &',

where

n: Dimension of the search space

N: The number of bacteria in the population

NC: chemotactic steps

Nre: The number of reproduction steps

Ned: the number of elimination-dispersal events

Ped: elimination-dispersal with probability

C(7): the size of the step taken in the random
direction specified by the tumble.

Step 2: Elimination-dispersal loop: 1=/+1

Step 3: Reproduction loop: k=k+1

Step 4: Chemotaxis loop: j=j+1

substep a: For i =1,2,...,N, take a chemotactic step
for bacterium i as follows.

substep b: Compute fitness function, ITSE (i j, k,1).

substep c: Let ITSElast=ITSE (i,,k,]) to save this
value since we may find a better cost via a run.

substep d: Tumble: generate a random vector A(i)

eRrR”
random number on [-1, 1].
substep e: Move: Let

values of

with each element A, (i),m=12,..,p, a

oy . - AG)
Lj,k)= k) + C) ———v.
P11 =761 R) T CO o e
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This results in a step of size C(i) in the direction
of the tumble for bacterium i.
substep f: Compute ITSE (i, j +1,k,1).
substep g: Swim
i) Let m=0 (counter for swim length).
ii) While m<N_ (if not climbed down too long).
*  Let m=m+1.
 IfITSE(,j+1,k,l) <ITSElast(if doing better), let
ITSElast=ITSE (i, j +1,k,/) and let

N N L A
¢ (l+19]9k):¢ (l+1ajak)+c(l)——
JAT (HA®)

and use this ¢*(i+1,/,k) to compute the new

ITSE (i, j +1,k,7) as we did in substep f.

» Else, let m=N,. This is the end of the while
statement.

substep h: Go to next bacterium (i, 1) if i# N (i.e.,
go to substep b to process the next bacterium).

Step 5: If j<No, go to step 3. In this case,
continue chemotaxis, since the life of the bacteria is
not over.

Step 6: Reproduction:

substep a: For the given k£ and 1, and for each
i=12,...N, let

N +1
ITSEpoun = D, ITSEG, j,k,1)
j=l

be the health of bacterium / (a measure of how
many nutrients it got over its lifetime and how
successful it was at avoiding noxious substances).
Sort bacteria and chemotactic parameters C(i)

order of ascending cost ITSE),,, (higher cost means

lower health).

substep b: The S, bacteria with the highest
ITSE,, .1, values die and the other S, bacteria with
the best values split (this process is performed by the
copies that are at the same location as their parent).

Step 7: If k<N,,, go to step 3. In this case, we
have not reached the number of specitied reproduction
steps, so we start the next generation in the
chemotactic loop.

Step 8: Elimination-dispersal: For i=1,2...,N,

re?

with probability £,;, eliminate and disperse each
bacterium, and this results in maintaining the number
of bacteria in the population constant.

To do this, if a bacterium is eliminated, simply
disperse one to a random location on the optimization
domain. If /< N_;, then go to step 2 otherwise end.

3. SIMULATION USING TEST FUNCTIONS

This section illustrates some comparisons between
the proposed GA-BF (Genetic Algorithms-Bacteria
Foraging algorithm) and the conventional SGA
(Simple Genetic Algorithm) using some test functions.

3.1. Mutation operation in GA-BF
Dynamic mutation [22] is used in the proposed GA-
BF algorithm

#i+ak, %), =0
=0 “)
xj—A(k,xj—xj ), 7=1,
where random constant, 7 becomes 0 or 1 and

A(k,y) is given as

Ak )=y (=51 5)

Here, 1 has 0 or 1 randomly and z is the maximum
number of generations as defined by the user.

3.2. Crossover operation in GA-BF
A modified simple crossover [22] is employed for
the BF-GA algorithm using

¥ =A%) +(1- DFY, ©
6
¥ = ATV +(1- A,

where X%, X, refers to the parent’s generations,

7’ J

X;, X refers to the offspring’s generations, j is the

chromosome of j th and A is the multiplier.

3.3. Performance variation for different step sizes

Step size here refers to the moving distance per step
of the bacteria. For performance comparison test
function F; is used

3
F(x)=Yx7, —5.12<x,%,,% <5.11. (7)
i=1

contour line of F(x)

inverse F(x)

Fix)

Fig. 1. Contour of test function F.
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Fig. 2. (a) Performance value for the three different
step sizes for the first 50 generations. (b)
Performance value for the three different step
sizes for generations 270-300.

Table 1. Parameter values for various step sizes.

Ste Optimal | Average
P x1 x2 x3 objective | objective

size . .
function | function

1.0e-6/3.87E-13 [ 6.60E-13 | 2.92E-07 | -5.43E-07 | -8.98E-08
1.0e-7|2.85E-14 | 2.34E-13 |-5.52E-08| 1.50E-07 {-5.45E-08
1.0¢-8}5.01E-16 | 1.43E-15 |-1.70E-08| -1.44E-08 [-2.31E-09

Fig. 2(a) and (b) and Table 1 illustrate the
performance of the GA-BF algorithm for the 300
generations. As evident from the results for bigger
step size, the convergence is faster. Table 1 illustrates
parameters of variables obtained by the step size of
Fig. 5(a).

3.4. Performance for different chemotactic steps of
GA-BF

Fig. 3 and Table 2 illustrate the relationship between

objective function and the number of generations for

different chemotactic steps. When the chemotactic

step is smaller, the objective function converges faster.
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T T v T T T
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Fig. 3. Performance value for different chemotactic
step for generations 270-300.

Table 2. Variation of objective function for different
chemotactic steps.

Optimal | Average
objective | objective
function | function

Chemo.

Step x1 x2 x3

100 }9.32E-08|3.78E-07 |-8.57E-09| 1.52E-13 | 1.59E-13
500 |2.97E-08|1.92E-08)|2.32E-08)|1.79E-15] 3.26E-15
1000 |-1.70E-08-1.44E-08[-2.31E-09|5.01E-16| 1.43E-15

3.5. Performance for different life time N

Fig. 4(a) and (b) illustrate the characteristics
between objective function and the number of
generations for different life time N of bacteria. Table
3 depicts some empirical results for a few more test
functions showing the initial condition’s variation of
objective values, parameter values, chemotactic steps,
total number of chemotactic reaction of bacteria, step
sizes, basic unit for movement of bacteria, the number
of critical reaction (), the number of bacteria (S),
generations (G), mutation (Mu), and crossover (Cr).

3.6. Performance of GA-BF for test functions
3.6.1 Test function: F)

Fig. 5(a) and (c) show the performance comparison
of GA and GA-BF with stepsize=1><10'5 for
generations 70, 300. As evident from Fig. 5(a) and (c)
the hybrid GA-BF approach could search the optimal
solutions earlier (10 generations) compared to GA.
Fig. 5(b) reveals that the GA-BF could converge
faster than GA during the final few iterations.

Fig. 5(d) depicts how the parameters are optimized
during the 27-300 generations by the characteristics of
GA and GA-BF with different step size (stepsize
=1x10). Table 4 depicts the final parameter values
obtained using GA and GA-BF algorithms. Fig. 5(e)
represents the characteristic of optimal approach of
variables on different 100 generations.

3.6.2 Test function: F,
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Fig. 4. (a) Performance value for different lifetime N
for the first 70 generations. (b) Performance
value for different lifetime N for generations
270-300.

2

Function F,(x)= 100(x12 - xz) +(1-x )2 is used

to illustrate the performance of GA and GA-FA. Fig.

6(a) illustrates the contour of this function at

T

x= [1 1] .

characteristics of the conventional GA and the GA-BF
algorithm.

Fig. 6(b) represents the performance

From these figures, it is evident that the proposed
GA-BF algorithm converges to the optimal solution
much faster than the conventional GA approach. Table
5 illustrates the various empirical results obtained
using GA and GA-BF approaches.

3.6.3 Test function: F;

5
Function £3 =Z[xl~] is applied to compare the
i=1
performance of GA and GA-BF. This function has
minimum -30 at
x=[-5.12, -5.12, -5.12, -5.12, -5.12,].
Fig. 7(a) illustrates the contour map for this function.
Fig. 7(b)-(d) represent the various results obtained on
the test function f; and Table 6 is for the values of
variables.

3.6.4 Test function: Fy

30
Function F; = Zixf +N(0, 1)is used to compare
i=1
the conventional GA and the proposed system GA-BF.
Fig. 8(a) illustrates the contour map of this function.
Fig. 8(b)-(c), depict the performance by the GA and
GA-BF method on different generation. Fig. 8(b), (¢)
illustrate that the proposed method converges faster
than the conventional GA.

4. INTELLIGENT TUNING OF PID
CONTROLLER FOR AUTOMATIC
VOLTAGE REGULATOR (AVR) USING GA-
BF APPROACH

The transfer function of the PID controller in the
AVR system is given by

PID(s) = k,+ L7 ks, (8)
A)

Table 3. Initial conditions of test function and variation of different parameters.

Range

Genetic Algorithm Parameters | Bacteria Foraging Parameters

Test functi L
10n x( ) xl(U)

1

Step

G Mu Cr CS .
size

Ns S

5121511 20

3
F(x)=)x;
i=1

300 0.9 0.1 | 1000 |1e-007| 3 10

F,(x) =100(x] —x,)* +(1-x,)* |-2.048|2.047| 20

600 0.9 0.1 | 1000 |1e-007| 3 10

-5.1215.12, 20

5
£ :Z[xi]
i=1

180 0.9 0.1 1000 {1e-007! 3 10

30
Fy =Y ix} +N(O))

i=1

-1.2811.27 ] 20

300 0.9 0.1 1000 |1e-007| 3 10
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Fig. 5. (a) Convergence of GA and GA-BF for stepsize=1x10-5 during the first 70 generations. (b) Tuning of
parameters during 70 generations. (¢) Convergence of GA and GA-BF for stepsize=1x10-5 during 300
generations. (d) Performance of GA and GA-BF for stepsize=1x10-5 during generations 270-300. (e)
Tuning of parameters for stepsize=1x10-5 during 100 generations.

Table 4. Performance of GA and GA-BF function F7.

Table 5. GA and GA-BF performance for function 7.

Optimal | Average Optimal Average

Method x1 x2 x3 objective | objective Method x1 x2 objective objective
function | function function function

GA |7.22E-08|5.07E-08 |-9.43E-09|7.87E-15|8.03E-15 GA |0.001967| 0.001967 1.0443267 1.0907699
GA-BF |-1.70E-08!-1.44E-08|-2.31E-09|5.01E-16{1.43E-15 BF-GA|5.12E-09| 5.17E-09 0.9999285 0.9998567
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Fig. 6. (a) Contour of test function (F2). (b) Perfor-
mance of GA and GA-BF during the first 70
generations on test function F5.
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and the block diagram of the AVR system is shown in
Fig. 9. The performance index of the control response
is defined by

min F (k,, k;, kg )

—Bt
= ¢ /max(?) +e P M o tess

(1 P )]1 — 1, /max(?)

e’ (ts + az.Hl -1, /max(t)I.Mo |) )
= +ess
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P (t; /max(t) + a.Mo)
= +ess,
a

s

az(l——e_ﬂ)-|l—tr/max(t)

ky. k;, k, : Parameter of PID controller,
[ Weighting factor,

Mo : Overshoot,

t, o Settling time (2%),

ess: Steady-state error,

t: Desired settling time.
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Fig. 7. (a) Contour map of test function F3. (b) Performance of GA and GA-BF during the first 180 generations on
test function F3. (c) Performance of GA and GA-BF during the first 70 generations on test function F3. (d)
Tuning of parameters during 160 generations on test function F.
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Table 6. Performance of GA and GA-BF for test function F3.

Method| x1 x2 x3 x4 x5 Optimal objective function | Average objective function
GA  |-5.024811)-5.015523-5.059941} -5.03529 | -5.03527 -30 -29.4
BF-GA |-5.1111861-5.097807(-5.089435| -5.06529 | -5.06891 -30 -29.95
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Fig. 8. (a) Contour map of test function F4. (b) Performance of GA and GA-BF during the first 50 generations on
test function Fy. (c) Performance of GA and GA-BF during generations 250-300 on test function. (d)
Tuning of parameters during 300 generations on test function Fy.

In (9), if the weighting factor £,
time of response curve is small,

increases, rising
and when f

decreases, rising time is big. Performance criterion is
defined as Mo=15061%, ess=0.0909, 1,.=0.2693(s), t,
=6.9834(s). Initial values of PID Controller and the

GA-BF algorithm are depicted in Table 8 and Table 9,

Veer(s) Vi(s)

1
04s+1

n
>

kp +§+kds I 10

0.15+1

G(s)

+

Amplifier Exciter

PID
Generator

1
0.01s +1

o
<

Sensor

Fig. 9. Block diagram of an AVR system.

respectively. For comparison purposes, we also used a
Particle Swarm Optimization (PSO) approach and a
Hybrid GA - PSO approach [22-29].

The Particle Swarm Optimization (PSO) algorithm
is mainly inspired by social behavior patterns of
organisms that live and interact within large groups
[25]. The standard PSO model consists of a swarm of
particles, which are initialized with a population of
random candidate solutions. They move iteratively
through the d-dimension problem space to search the
new solutions, where the fitness, £, can be calculated
as certain qualities are measured. Each particle has a
position represented by a position-vector X; (i is the

index of the particle), and a velocity represented by a

velocity-vector V;. Each particle remembers its own

best position so far in a vector fci# , and the j-th
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Table 8. Range of PID parameters.

Range
PID parameters Min £ Max
k, 0 1.5
k; 0 1
ky 0 1
Table 9. Parameters of BF-GA algorithm.
parameters Values
Stepsize 0.08
Ns 4
Pc 0.9
Pm 0.65

Terminal voltage step response

o o —_ e -3
m o = b e m

terminat voltage

o o
LS B N

o]

lime(sec)
Fig. 10. Step response of terminal voltage in an AVR
system without controller.

dimensional value of the vector J?f is xf ;- The best

position-vector among the swarm so far is then stored
in a vector f*, and the j-th dimensional value of the

vector ¥ is x;. During the iteration time t, the

update of the velocity from the previous velocity to
the new velocity is determined and then the new
position is determined by the sum of the previous
position and the new velocity. The conventional PSO
algorithm was used for controlling the mutation
process of the genetic algorithm (GA), as an attempt
to improve the GA learning efficiency. The
architecture and flow chart of the proposed method
are given in [26]. Euclidean distance is used for
selecting crossover parents (in the hybrid GA-PSO
approach) to avoid local optima and to obtain fast
solutions.

Fig. 10 illustrates the response of terminal voltage
to a step input in the control system. Figs. 11-14
represent results obtained by the GA and GA-BF
algorithm for the variation of £ for 200 generations

as per (9). Empirical results show satisfactory learning.

Figs. 15-17 illustrate the search process for optimal
parameters for the variation of g (=0.5, 1.0, and 1.5)

Terminal voltage step response ( BF-GA, gen. =200 )
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Fig. 11. Terminal voltage step response of an AVR
system using BF-GA algorithm.

Terminal voltage step response (=05, 9en.=150)
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Fig. 12. Terminal voltage step response of an AVR
system with different controllers (£ =0.5,

generations=200).
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Fig. 13. Terminal voltage step response of an AVR
system with different controllers (8 =1.0,
generations=200).

by GA-BF approach. Table 10 depicts the best
solution using BF-GA controller for different £
values and Table 11 illustrates a performance
comparison of the values evaluated using different
methods ( § =1.5, 200 generations).
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generations=200).
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Fig. 15. Search process for optimal parameter values

of an AVR system by the GA-BF method for
£ =05.
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Fig. 16. Search process for optimal parameter values

of an AVR system by GA-BF method for
p=1.0.

objbest,objave

objbest
------- objave {-

PID parameter

Fig. 17. Search process for optimal parameter values

of an AVR system by GA-BF method for
B =15.

Table 10. Best solution obtained using BF-GA controller with different £ values.

Recently, many variants of genetic algorithms for
improving the learning related to control engineering
have been investigated. The general problem of

Number of Evaluati
k . 0
P generation i ki ka Mo (%) s s Ir on value
0.5 200 0.68233 | 0.6138 | 0.26782 1.94 0.0171 0.3770 | 0.2522 | 0.3614
1 200 0.68002 | 0.52212 | 0.24401 1.97 0.0067 | 0.4010 | 0.2684 | 0.1487
1.5 200 0.67278 | 0.47869 | 0.22987 1.97 0.0014 | 0.4180 | 0.2795 | 0.07562
Table 11. Comparison of the objective value using different methods ( # =1.5, generation=200).
Evaluati
k . 0
yij Methods » k; kg Mo (%) ess ls I on value
GA 0.8282 | 0.7143 0.3010 | 6.7122 | 0.0112 | 0.5950 | 0.2156 | 0.0135
15 PSO 0.6445 0.5043 0.2348 | 0.8399 | 0.0084 | 0.4300 | 0.2827 | 0.0073
’ GA-PSO 0.6794 | 0.6167 | 0.2681 1.8540 | 0.0178 | 0.8000 | 0.2526 | 0.0071
BF-GA 0.6728 | 0.4787 | 0.2299 1.97 0.0014 | 0.4180 | 0.2795 0.0756
5. CONCLUSIONS evolutionary algorithm based engineering system

design has been tackled in various ways mainly from
a convergence perspective and finding local or
suboptimal solutions. The GA has also been used to
optimize nonlinear system strategies. Among some
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other methods, a large amount of research is focused
on the design of fuzzy controllers using evolutionary
algorithm approaches. The GA could be used for
developing the knowledge base in the form of
linguistic rules and the fine tuning of fuzzy
membership functions, fuzzy operators, etc. In all
these situations, there could be problems with local
optimization or suboptimal solutions.

This paper proposed a novel hybrid approach
consisting of GA (Genetic Algorithm) and BF
(Bacterial Foraging) and the performance is illustrated
using various test functions. Also, the proposed GA-
BF algorithm is used for tuning a PID controller of the
AVR system. From Figs. 2-8 of test functions
F, - F,, the suggested hybrid system GA-BF has the

better performance obtaining the optimal parameter
simultaneously. We applied the suggested hybrid
system GA-BF to the AVR system of Fig. 9, and the
resulting Figs. 11-14 show the comparison of the
performance obtained by each approach.

The proposed approach has the potential to be
useful in other practical optimization problems (e.g.,
engineering design, online distributed optimization in
distributed computing and cooperative control) as
social foraging models work very well for distributed
non-gradient optimization methods. Other species of
bacteria or biological based computing approaches
could be studied but it depends on how practically
useful these optimization algorithms are for
engineering optimization problems, because they
depend on the theoretical properties of the algorithm,
theoretical and empirical comparisons to other
methods, and extensive evaluation on many
benchmark problems and real-world problems.
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