• Title/Summary/Keyword: Hybrid-GA Algorithm

Search Result 168, Processing Time 0.02 seconds

Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating (유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.19-28
    • /
    • 2006
  • Most conventional model updating methods must use mathematical objective function with experimental modal matrices and analytical system matrices or must use information about the gradient or higher derivatives of modal properties with respect to each updating parameter. Therefore, most conventional methods are not appropriate for complex structural system such as bridge structures due to stability problem in inverse analysis with ill-conditions. Sometimes, moreover, the updated model may have no physical meaning. In this paper, a new FE model updating method based on a hybrid optimization technique using genetic algorithm (GA) and Holder-Mead simplex method (NMS) is proposed. The performance of hybrid optimization technique on the nonlinear problem is demonstrated by the Goldstein-Price function with three local minima and one global minimum. The influence of the objective function is evaluated by the case study of a simulated 10-dof spring-mass model. Through simulated case studies, finally, the objective function is proposed to update mass as well as stiffness at the same time. And so, the proposed hybrid optimization technique is proved to be an efficient method for FE model updating.

Generalized Fuzzy Modeling

  • Hwang, Hee-Soo;Joo, Young-Hoon;Woo, Kwang-Bang
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1145-1150
    • /
    • 1993
  • In this paper, two methods of fuzzy modeling are prsented to describe the input-output relationship effectively based on relation characteristics utilizing simplified reasoning and neuro-fuzzy reasoning. The methods of modeling by the simplified reasoning and the neuro-fuzzy reasoning are used when the input-output relation of a system is 'crisp' and 'fuzzy', respectively. The structure and the parameter identification in the modeling method by the simplified reasoning are carried out by means of FCM clustering and the proposed GA hybrid scheme, respectively. The structure and the parameter identification in the modeling method by the neuro-fuzzy reasoning are carried out by means of GA and BP algorithm, respectively. The feasibility of the proposed methods are evaluated through simulation.

  • PDF

A Web-based Solver for solving the Reliability Optimization Problems (신뢰도 최적화 문제에 대한 웹기반의 Solver 개발)

  • 김재환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.1
    • /
    • pp.127-137
    • /
    • 2002
  • This paper deals with developing a Web-based Solver NRO(Network Reliability Optimizer) for solving three classes of reliability redundancy optimization problems which are generated in series systems. parallel systems and complex systems. Inputs of NRO consisted in four parts. that is, user authentication. system selection. input data and confirmation. After processing of inputs through internet, NRO provides conveniently the optimal solutions for the given problems on the Web-site. To alleviate the risks of being trapped in a local optimum, HH(Hybrid-Heuristic) algorithm is incorporated in NRO for solving the given three classes of problems, and moderately combined GA(Genetic Algorithm) with the modified SA(Simulated Annealing) algorithm.

  • PDF

Evaluation of concrete compressive strength based on an improved PSO-LSSVM model

  • Xue, Xinhua
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.505-511
    • /
    • 2018
  • This paper investigates the potential of a hybrid model which combines the least squares support vector machine (LSSVM) and an improved particle swarm optimization (IMPSO) techniques for prediction of concrete compressive strength. A modified PSO algorithm is employed in determining the optimal values of LSSVM parameters to improve the forecasting accuracy. Experimental data on concrete compressive strength in the literature were used to validate and evaluate the performance of the proposed IMPSO-LSSVM model. Further, predictions from five models (the IMPSO-LSSVM, PSO-LSSVM, genetic algorithm (GA) based LSSVM, back propagation (BP) neural network, and a statistical model) were compared with the experimental data. The results show that the proposed IMPSO-LSSVM model is a feasible and efficient tool for predicting the concrete compressive strength with high accuracy.

Energy-efficient Low-delay TDMA Scheduling Algorithm for Industrial Wireless Mesh Networks

  • Zuo, Yun;Ling, Zhihao;Liu, Luming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2509-2528
    • /
    • 2012
  • Time division multiple access (TDMA) is a widely used media access control (MAC) technique that can provide collision-free and reliable communications, save energy and bound the delay of packets. In TDMA, energy saving is usually achieved by switching the nodes' radio off when such nodes are not engaged. However, the frequent switching of the radio's state not only wastes energy, but also increases end-to-end delay. To achieve high energy efficiency and low delay, as well as to further minimize the number of time slots, a multi-objective TDMA scheduling problem for industrial wireless mesh networks is presented. A hybrid algorithm that combines genetic algorithm (GA) and simulated annealing (SA) algorithm is then proposed to solve the TDMA scheduling problem effectively. A number of critical techniques are also adopted to reduce energy consumption and to shorten end-to-end delay further. Simulation results with different kinds of networks demonstrate that the proposed algorithm outperforms traditional scheduling algorithms in terms of addressing the problems of energy consumption and end-to-end delay, thus satisfying the demands of industrial wireless mesh networks.

An Efficient Artificial Intelligence Hybrid Approach for Energy Management in Intelligent Buildings

  • Wahid, Fazli;Ismail, Lokman Hakim;Ghazali, Rozaida;Aamir, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.12
    • /
    • pp.5904-5927
    • /
    • 2019
  • Many artificial intelligence (AI) techniques have been embedded into various engineering technologies to assist them in achieving different goals. The integration of modern technologies with energy consumption management system and occupant's comfort inside buildings results in the introduction of intelligent building concept. The major aim of this integration is to manage the energy consumption effectively and keeping the occupant satisfied with the internal environment of the building. The last few couple of years have seen many applications of AI techniques for optimizing the energy consumption with maximizing the user comfort in smart buildings but still there is much room for improvement in this area. In this paper, a hybrid of two AI algorithms called firefly algorithm (FA) and genetic algorithm (GA) has been used for user comfort maximization with minimum energy consumption inside smart building. A complete user friendly system with data from various sensors, user, processes, power control system and different actuators is developed in this work for reducing power consumption and increase the user comfort. The inputs of optimization algorithms are illumination, temperature and air quality sensors' data and the user set parameters whereas the outputs of the optimization algorithms are optimized parameters. These optimized parameters are the inputs of different fuzzy controllers which change the status of different actuators according to user satisfaction.

A Hybrid Artificial Neural Network and Genetic Algorithm based Cost Estimation Approach for Feature-based Plastic Injection Products (특징기반 플라스틱 사출제품을 위한 하이브리드 인공신경망과 유전자 알고리즘 기반의 비용 평가 방법)

  • Seo, Kwang-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.2963-2968
    • /
    • 2011
  • Plastic injection products have been widely used in various electronic appliances and high-tech commodities. However, plastic injection product manufacturers have to spare no efforts to shorten new product development period to introduce new products into the market ahead of other competitors, gaining competitiveness and satisfying customers. The manufacturers cannot only get big target market share rapidly but also the advantage of leading the product price in order to survive in highly competitive market. This paper proposes the cost estimation approach of feature-based plastic injection products by using hybrid artificial neural network and genetic algorithm. The proposed method is to dramatically simplify and shorten the complex conventional cost estimation procedures and the requested computation parameters of plastic injection products. The case study demonstrates the efficiency and effectiveness of the proposed model in solving the cost estimation problem of plastic injection products at the development stage.

Seismic strain analysis of buried pipelines in a fault zone using hybrid FEM-ANN approach

  • Shokouhi, Seyed Kazem Sadat;Dolatshah, Azam;Ghobakhloo, Ehsan
    • Earthquakes and Structures
    • /
    • v.5 no.4
    • /
    • pp.417-438
    • /
    • 2013
  • This study was concerned on the application of a hybrid approach for analyzing the buried pipelines deformations subjected to earthquakes. Nonlinear time-history analysis of Finite Element (FE) model of buried pipelines, which was modeled using laboratory data, has been performed via selected earthquakes. In order to verify the FE model with experiments, a statistical test was done which demonstrated a good conformity. Then, the FE model was developed and the optimum intersection angle of pipeline and fault was obtained via genetic algorithm. Transient seismic strain of buried pipeline in the optimum intersection angle of pipeline and fault was investigated considering the pipes diameter, the distance of pipes from fault, the soil friction angles and seismic response duration of buried pipelines. Also, a two-layer perceptron Artificial Neural Network (ANN) was trained using results of FE model, and a nonlinear relationship was obtained to predict the bending strain of buried pipelines based on the pipes diameter, intersection angles of the pipelines and fault, the soil friction angles, distance of pipes from the fault, and seismic response duration; whereas it contains a wide range of initial input data without any requirement to laboratory measurements.

A new hybrid method for reliability-based optimal structural design with discrete and continuous variables

  • Ali, Khodam;Mohammad Saeid, Farajzadeh;Mohsenali, Shayanfar
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.369-379
    • /
    • 2023
  • Reliability-Based Design Optimization (RBDO) is an appropriate framework for obtaining optimal designs by taking uncertainties into account. Large-scale problems with implicit limit state functions and problems with discrete design variables are two significant challenges to traditional RBDO methods. To overcome these challenges, this paper proposes a hybrid method to perform RBDO of structures that links Firefly Algorithm (FA) as an optimization tool to advanced (finite element) reliability methods. Furthermore, the Genetic Algorithm (GA) and the FA are compared based on the design cost (objective function) they achieve. In the proposed method, Weighted Simulation Method (WSM) is utilized to assess reliability constraints in the RBDO problems with explicit limit state functions. WSM is selected to reduce computational costs. To performing RBDO of structures with finite element modeling and implicit limit state functions, a First-Order Reliability Method (FORM) based on the Direct Differentiation Method (DDM) is utilized. Four numerical examples are considered to assess the effectiveness of the proposed method. The findings illustrate that the proposed RBDO method is applicable and efficient for RBDO problems with discrete and continuous design variables and finite element modeling.

Genetic Optimization of Fyzzy Set-Fuzzy Model Using Successive Tuning Method (연속 동조 방법을 이용한 퍼지 집합 퍼지 모델의 유전자적 최적화)

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.207-209
    • /
    • 2007
  • In this paper, we introduce a genetic optimization of fuzzy set-fuzzy model using successive tuning method to carry out the model identification of complex and nonlinear systems. To identity we use genetic alrogithrt1 (GA) sand C-Means clustering. GA is used for determination the number of input, the seleced input variables, the number of membership function, and the conclusion inference type. Information Granules (IG) with the aid of C-Means clustering algorithm help determine the initial paramters of fuzzy model such as the initial apexes of the, membership functions in the premise part and the initial values of polyminial functions in the consequence part of the fuzzy rules. The overall design arises as a hybrid structural and parametric optimization. Genetic algorithms and C-Means clustering are used to generate the structurally as well as parametrically optimized fuzzy model. To identify the structure and estimate parameters of the fuzzy model we introduce the successive tuning method with variant generation-based evolution by means of GA. Numerical example is included to evaluate the performance of the proposed model.

  • PDF