• 제목/요약/키워드: Hybrid wind and energy storage system

검색결과 51건 처리시간 0.03초

중소형 태양광/풍력 복합발전시스템의 보조 전력보상장치에 관한 연구 (The Auxiliary Power Compensation apparatus for small scale Photovoltaic/Wind Hybrid Generation System)

  • 박세준;윤정필;윤형상;임중열;강병복;이정일;차인수
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2004년도 전력전자학술대회 논문집(1)
    • /
    • pp.109-112
    • /
    • 2004
  • Photovoltaic energy and wind energy are very in constant depending on the season, time and extremely intermittent energy sources. Because of these reasons, in view of the reliability the solar and the wind generation system have many problems(energy conversion, energy storage, load control etc.) comparing with a conventional power plant. So, in order to solve these existing problems, hybrid generation system of photovoltaic(500W) and wind power(400W), which combines wind power energy and solar energy to have effect of supporting each other, was suggested. But hybrid generation system cannot always generate stable output with weather condition, the auxiliary power compensation apparatus that uses elastic energy of spiral spring to hybrid generation system was also added for the present study. And it may confirm that power was continuously provided to load by storing energy obtained from generating rotary energy of spiral spring generates in small scale generator.

  • PDF

100% 신재생에너지 자원 기반 에너지 공급을 위한 태양광, 풍력 및 바이오 발전의 통합 전략 및 경제성 평가 (Economic Benefits of Integration of Supplementary Biopower and Energy Storage Systems in a Solar-Wind Hybrid System)

  • 황해진;문준영;김지용
    • Korean Chemical Engineering Research
    • /
    • 제58권3호
    • /
    • pp.381-389
    • /
    • 2020
  • 본 연구에서는 다양한 신재생 에너지원 기반 전력 공급 시스템 구축하고, 각 시스템의 최적 전력 공급 비용을 비교 분석 하였다. 특히, 풍력 및 태양광 등 대표적인 신재생에너지 생산 기술과 더불어 대형 에너지 저장 시스템 및 바이오매스 기반 전력 생산 기술을 포함함으로써, 신재생에너지 자원의 간헐성 및 에너지 공급과 수요의 불균형의 한계를 극복하였다. 본 연구에서 제안한 6가지의 신재생 에너지원 기반 전력 공급 시스템을 실제 제주도 전력 공급 문제에 적용함으로써, 제주도 지역의 최적 에너지 시스템을 규명하였으며, 다양한 에너지 생산 기술의 조합의 효과를 분석하였다. 분석 결과, 태양광 및 풍력 기반 전력 공급 단가는 각각 0.18, 0.28 $/kWh로 개별 자원 기반의 에너지 생산 시스템의 기존 전력망을 통한 공급 단가에 비해 경쟁력이 낮았다. 또한 자원의 간헐성 및 공급과 수요의 불균형 등 단일자원 기반의 단점을 효과적으로 개선하기 위하여 3가지 신재생 자원 및 대형 에너지 저장 시스템을 포함한 하이브리드 공급 시스템의 경제적 효과를 분석하였다. 그 결과 기존 전통적 전력망 공급과 가격 경쟁력을 갖는 0.08 $/kWh 수준의 100% 신재생에너지 기반 전력 공급 시스템 구축이 가능함을 규명하였다.

Research into The Future Development of the Hybrid System for Buoy

  • Lee, Ji-Young;Kim, Jong-Do;Lee, Jong-Ho;Lee, Jin-Yeol;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권5호
    • /
    • pp.583-591
    • /
    • 2007
  • This paper reports the performance of a 150W PV-wave hybrid system with battery storage in buoy. This system was originally designed to meet a new hybrid ower system for buoy in Korea. In the case or lighted buoys and lighthouses, a light failure alarm system of wireless radio is attached so that light failures are immediately notified to the office. At lighthouse offshore fixed lights and light buoys where commercial electricity is not available, the power source depends on solar system and batteries. This power system has a various problems. Therefore energy derived from the sunshine, wind and waves has been used as the energy source lot aids to navigation. Recently a hybrid system of combining the solar, wind and the wave generator is a favorable system lot the ocean facilities like lighthouse and buoy. The hybrid system in this paper is intended for variable DC load like light, communication system in the buoy and includes a PV-wane generation system and battery. This is composed a high efficiency charging algorithm, switching converter and controller. This paper includes discussion on system reliability, power quality, and effects of hybrid system in the buoy. Simulation and experimental results show excellent performance.

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

Modeling of Solar/Hydrogen/DEGS Hybrid System for Stand Alone Applications of a Large Store

  • Hong, Won-Pyo
    • 조명전기설비학회논문지
    • /
    • 제27권11호
    • /
    • pp.57-68
    • /
    • 2013
  • The market for distributed power generation based on renewable energy is increasing, particularly for standalone mini-grid applications in developing countries with limited energy resources. Stand-alone power systems (SAPS) are of special interest combined with renewable energy design in areas not connected to the electric grid. Traditionally, such systems have been powered by diesel engine generator sets (DEGS), but also hybrid systems with photovoltaic and/or wind energy conversion systems (WECS) are becoming quite common nowadays. Hybrid energy systems can now be used to generate energy consumed in remote areas and stand-alone microgrids. This paper describes the design, simulation and feasibility study of a hybrid energy system for a stand-alone power system. A simulated model is developed to investigate the design and performance of stand-alone hydrogen renewable energy systems. The analysis presented here is based on transient system simulation program (TRNSYS) with realistic ventilation load of a large store. Design of a hybrid energy system is site specific and depends on the resources available and the load demand.

부조일에 따른 독립형 태양광 풍력 복합발전 시스템에서 전기저장장치의 경제성에 관한 연구 (A Study on the Economic of Electrical Storage Device of Stand Alone PV/Wind Hybrid System Based upon Sunless Days)

  • 최병수;김재철
    • 조명전기설비학회논문지
    • /
    • 제26권3호
    • /
    • pp.16-23
    • /
    • 2012
  • This paper relates to a study on the economic of electrical storage device for supplying power in sunless days, in the stand alone PV/Wind hybrid system, which it is applied to separate houses. In a photovoltaic/wind hybrid power system used in a separate house, when only the battery is used in sunless days, the capacity of the battery is become larger. For example, as in recent days, if cloudy days are frequent due to anomaly climate, it is difficult to supply power stably by only the battery based upon pre-estimated sunless days. Accordingly, in order to supply stably power of new renewable energy such as solar to any separate houses, it is preferable to reduce the capacity of battery by decreasing the number of sunless days when estimating the capacity of battery and to drive the small generator for compensation of the power shortage.

직교류 합성 충전 패턴을 이용한 풍력 연계용 ESS의 배터리 충전 효율 향상 (Improvement of Battery Charging Efficiency of ESS for Wind Power Application Using DC-AC Hybrid Charging Pattern)

  • 이종학;송승호
    • 전력전자학회논문지
    • /
    • 제22권4호
    • /
    • pp.330-335
    • /
    • 2017
  • Increased fossil fuel consumption causes global warming, environmental pollution, and abnormal climate change. Wind-generated power installation is proposed to solve this problem. Recently, the wind power plant construction case encourages the installation of the energy storage system (ESS) to improve the intermittency of wind power. The maximized ESS operation profits connected to wind power are not generated in the simplest operation pattern of charging at night and discharging at day. The battery charging efficiency improvement should be considered to get more profits. Thus, there is a possibility of increasing ESS operation profits by analyzing the battery AC and DC charging/discharging efficiency and the yearly average sealed maintenance free (SMP) in hours. In this paper, the battery impedance characteristic, AC and DC charging/discharging efficiency, and the yearly average SMP are analyzed. The operation scenario to improve the ESS battery charging efficiency connected to wind power is proposed and verified via simulation.

Optimized Installation and Operations of Battery Energy Storage System and Electric Double Layer Capacitor Modules for Renewable Energy Based Intermittent Generation

  • Min, Sang Won;Kim, Seog Ju;Hur, Don
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권2호
    • /
    • pp.238-243
    • /
    • 2013
  • In this paper, a novel approach for optimized installation and operations of battery energy storage system (BESS) and electric double layer capacitor (EDLC) modules for the renewable energy based intermittent generation is presented for them to be connected with an electric power grid. In order to make use of not merely the high energy density of battery but also the high power density of EDLC modules, it is very useful to devise the hybrid system which combines BESS and EDLC modules. The proposed method adopts the linear programming to calculate the optimized capacity as well as the quadratic programming to transmit the optimal operational signals to BESS and EDLC modules. The efficiency of this methodology will be demonstrated in the experimental study with the real data of wind speed in Texas.

수소기반 신재생에너지 복합발전 시스템의 지역별 운영성과 분석 - HOMER를 활용한 사례 연구 (Performance Analysis of Hydrogen Based Hybrid System Using HOMER - a Case Study in South Korea)

  • 이명원;손민희;김경남
    • 한국수소및신에너지학회논문집
    • /
    • 제29권6호
    • /
    • pp.606-619
    • /
    • 2018
  • This study focuses on the performance of hydrogen energy based hybrid system in terms of system reliability of electricity generation. With this aim to evaluate the off-grid system of photovoltaic (PV), wind turbine, electrolyzer, fuelcell, $H_2$ tank and storage batteries, 14 different sites in South Korea are simulated using HOMER. Performance analysis includes simulation on the different sites, verification of operational behaviors on regional and seasonal basis, and comparison among a control group. The result shows that the generation performance of hydrogen powered fuelcell is greatly affected by geographical change rather than seasonal effect. In addition, as the latitude of the hybrid systems location decrease, renewable power output and penetration ratio (%) increase under constant electrical load. Therefore, the hydrogen based hybrid system creates the stability of electricity generation, which best suits in the southern part of South Korea.

독립형 태양광, 풍력, 소형발전기 복합시스템에서 안정적인 전력공급을 위한 컨트롤러에 관한 연구 (The Study on the Controller for Supplying Stably Power with a Stand-Alone Photovoltaic/Wind/Small Generator Hybrid Power Generation System)

  • 최병수;김재철
    • 조명전기설비학회논문지
    • /
    • 제26권4호
    • /
    • pp.48-56
    • /
    • 2012
  • The object of this paper is the controller for supplying stably power in a separate house in which a hybrid electrical storage system with a stand-alone photovoltaic/wind power generation system and a small generator is applied. In the photovoltaic/wind hybrid power system used in the separate house, when only the battery is used in sunless days, the capacity of the battery is become larger. In particular, as in recent days, if cloudy days are frequent due to anomaly climate, it is difficult to estimate the number of sunless days. Accordingly, it is preferable to build the electrical storage system that numbers of sunshineless days are to be controlled and a shortage amount of the power generation capacity is to be handled by a small generator system. In order to supply stably power of new renewable energy such as solar to any separate houses, it is preferable to reduce the capacity of battery by decreasing the number of sunless days when estimating the capacity of battery and to drive the small generator for compensation of the power shortage. Such system needs components including inverters for photovoltaic and wind power generation system, batteries and controllers for automatically driving the small generator, based upon the nature of the stand-alone house, and it is preferable to use the controller having a simpler and higher stability by adopting the all-in-one scheme to facilitate its maintenance.