• Title/Summary/Keyword: Hybrid tower

Search Result 44, Processing Time 0.024 seconds

An Experimental Study on Performance Characteristic of 30RT Closed-Type Hybrid Cooling Tower using Bare Tube (베어관을 이용한 30RT급 하이브리드 밀폐형 냉각탑의 성능특성에 관한 실험적 연구)

  • Jun, Chul-Ho;Lee, Ho-Saeng;Moon, Choon-Geun;Kim, Jae-Dol;Yoon, Jung-In
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.1096-1101
    • /
    • 2005
  • In this study, the experiment of thermal performance about closed-type hybrid cooling tower was conducted. A closed type cooling tower is a device similar to a general cooling tower, but with cooling tower replaced by a heat exchanger. The test section for this experiment has the process that the cooling water flows from top part of heat exchanger to bottom side in the inner side of tube, and spray water flows gravitational direction in the outer side of it. Air contacts of tube outer side are counterflow. The heat transfer pipe used in this experiment is a bare type tube having an outside diameter of 15.88mm. In this experiment, heat performances of the cooling tower are calculated such as overall heat transfer coefficient of between the process fluid and air, cooing capacity and pressure drop.

  • PDF

Preliminary design and structural responses of typical hybrid wind tower made of ultra high performance cementitious composites

  • Wu, Xiangguo;Yang, Jing;Mpalla, Issa B.
    • Structural Engineering and Mechanics
    • /
    • v.48 no.6
    • /
    • pp.791-807
    • /
    • 2013
  • Ultra High Performance Cementitious Composites with compressive strength 200MPa (UHPCC-200) is proposed for the structural design of super high hybrid wind turbine tower to gain durability, ductility and high strength design objectives. The minimal wall thickness is analyzed using basic bending and compression theory and is modified by a toque influence coefficient. Two cases of wall thickness combination of middle and bottom segment including varied ratio and constant ratio are considered within typical wall thickness dimension. Using nonlinear finite element analysis, the effects of wall thickness combinations with varied and constant ratio and prestress on the structural stress and lateral displacement are calculated and analyzed. The design limitation of the segmental wall thickness combinations is recommended.

UsN based Soundness Monitoring Diagnosis System of Power Transmission Steel Tower (UsN 기반의 송전철탑 건전성 감시진단시스템 기본설계)

  • Lee, Dong-Cheol;Bae, Ul-Lok;Kim, Woo-Jung;Min, Bung-Yun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.56-62
    • /
    • 2007
  • In this paper, design method for power tower hazard diagnosis/predition system based on UsN was proposed. The proposed method used multi-hybrid sensors to measure rotation, displacement, and inclination state of power tower, and made decision/prediction of hazard of power tower. System design was made with requirement analysis of monitoring for transmission power facility and use of MEMS and optic fiber sensors. For hazard decision, analysis of correlation was made using sensor output. LN based on IEC61850,international standard for digital substation, was also proposed. For transmission facility monitoring, digital substation and power tower were considered as parts of power facility networks.

Cooling Performance of Cooling Tower-Assisted Ground-Coupled Heat Pump (GCHP) System Applied in Hospital Building (병원 건물에 설치된 냉각탑 병용 지열 히트펌프 시스템의 냉방 성능)

  • Sohn, Byonghu;Lee, Doo-Young;Min, Kyung-Chon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.1
    • /
    • pp.7-16
    • /
    • 2016
  • This paper presents the measurement and analysis results for the cooling performance of ground-coupled heat pump (GCHP) system using a cooling tower as a supplemental heat rejector. In order to demonstrate the performance of the hybrid approach, we installed the monitoring equipments including sensors for measuring temperature and power consumption, and measured operation parameters from May 1 to October 30, 2014. The results showed that the entering source temperature of brine returning from the ground heat exchanger was in a range of design target temperature. Leaving load temperatures to building showed an average value of $11.4^{\circ}C$ for cooling season. From the analysis, the daily performance factor (PF) of geothermal heat pumps ranged from 4.4 to 5.2, while the daily PF of hybrid GCHP system varied from 3.0 to 4.0 over the entire cooling season.

Performance Analysis of Cooling Tower-Assisted Hybrid Ground-Coupled Heat Pump (HGCHP) System (냉각탑 병용 하이브리드 지열 히트펌프 시스템의 성능 분석)

  • Sohn, Byonghu;Lee, Doo-Young;Choi, Jae-Ho;Min, Kyong-Chon
    • Transactions of the KSME C: Technology and Education
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 2016
  • This paper presents the measurement and analysis results for the performance of HGCHP system using a cooling tower as a supplemental heat rejector. In order to demonstrate the performance of the hybrid approach, we installed the monitoring equipments including sensors for measuring temperature and power consumption, and measured operation parameters from February 1, 2014 to February 28, 2015. Leaving load temperatures to building showed an average value of $11.7^{\circ}C$ for cooling and $39.5^{\circ}C$ for heating, respectively. From the analysis, the daily PF of hybrid GCHP system varied from 2.6 to 6.6 over the measurement period.

Numerical modeling and global performance analysis of a 15-MW Semisubmersible Floating Offshore Wind Turbine (FOWT)

  • Da Li;Ikjae Lee;Cong Yi;Wei Gao;Chunhui Song;Shenglei Fu;Moohyun Kim;Alex Ran;Tuanjie Liu
    • Ocean Systems Engineering
    • /
    • v.13 no.3
    • /
    • pp.287-312
    • /
    • 2023
  • The global performance of a 15 MW floating offshore wind turbine, a newly designed semisubmersible floating foundation with multiple heave plates by CNOOC, is investigated with two independent turbine-floater-mooring coupled dynamic analysis programs CHARM3D-FAST and OrcaFlex. The semisubmersible platform hosts IEA 15 MW reference wind turbine modulated for VolturnUS-S and hybrid type (chain-wire-chain with clumps) 3×2 mooring lines targeting the water depth of 100 m. The numerical free-decay simulation results are compared with physical experiments with 1:64 scaled model in 3D wave basin, from which appropriate drag coefficients for heave plates were estimated. The tuned numerical simulation tools were then used for the feasibility and global performance analysis of the FOWT considering the 50-yr-storm condition and maximum operational condition. The effect of tower flexibility was investigated by comparing tower-base fore-aft bending moment and nacelle translational accelerations. It is found that the tower-base bending moment and nacelle accelerations can be appreciably increased due to the tower flexibility.

Activated Carbon-Photocatalytic Hybrid System for the Treatment of the VOC in the Exhaust Gas from Painting Process (도장공정 배기가스 내 VOC 처리를 위한 활성탄-광촉매 복합시스템)

  • Lee, Chan;Cha, Sang-Won;Lee, Tae-Kyu
    • Journal of Energy Engineering
    • /
    • v.14 no.2 s.42
    • /
    • pp.133-139
    • /
    • 2005
  • An activated carbon-photo catalysis hybrid system is proposed for the treatment of VOC produced from paint booth. and its VOC removal performance is experimentally evaluated. Activated carbon tower is designed on the basis of the adsorption characteristics of toluene. Photocatalytic system is designed as the series of $TiO_2/SiO\_2$ fluidized bed reactor and $TiO_2$-coated filters. The present activated carbon-photo catalysis hybrid system shows the VOC removal efficiency within $75\~100\%$ under different VOC species and concentrations.

Hybrid Deck System for Partially Earth Anchored Cable Stayed Bridges (부분 인장형 사장교 주형의 복합 구조)

  • Cho, Jae-Young;Noh, Junghwi;Kim, Jung Joong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.4
    • /
    • pp.30-36
    • /
    • 2013
  • Partially earth anchored (PEA) can improve the structural safety and economic feasibility of multiple span cable stayed bridge (CSB). The PEA-CSB can restrain axial compressive load acting on a tower and reduce the global buckling length of a stiffened girder. For these reasons, structural members subject to axial forces can be effectively utilized and material quantity required for a steel deck can be reduced to save construction cost. In this study, the PEA system was verified for its application on a multiple span CSB. The CSB is a four-tower multi-span bridge which has a main span length of 500 m. As high tensile stress was generated at the top of the bridge decks at the mid-span between two main columns, a hybrid deck system for enhancing the bridge deck sections was proposed. While the composite sections made of concrete and steel were used near to the main columns, steel sections were used at the mid-span between two main columns.

Elastoplastic FEM analysis of earthquake response for the field-bolt joints of a tower-crane mast

  • Ushio, Yoshitaka;Saruwatari, Tomoharu;Nagano, Yasuyuki
    • Advances in Computational Design
    • /
    • v.4 no.1
    • /
    • pp.53-72
    • /
    • 2019
  • Safety measures for tower cranes are extremely important among the seismic countermeasures at high-rise building construction sites. In particular, the collapse of a tower crane from a high position is a very serious catastrophe. An example of such an accident due to an earthquake is the case of the Taipei 101 Building (the author was the project director), which occurred on March 31, 2002. Failure of the bolted joints of the tower-crane mast was the direct cause of the collapse. Therefore, it is necessary to design for this eventuality and to take the necessary measures on construction sites. This can only be done by understanding the precise dynamic behavior of mast joints during an earthquake. Consequently, we created a new hybrid-element model (using beam, shell, and solid elements) that not only expressed the detailed behavior of the site joints of a tower-crane mast during an earthquake but also suppressed any increase in the total calculation time and revealed its behavior through computer simulations. Using the proposed structural model and simulation method, effective information for designing safe joints during earthquakes can be provided by considering workability (control of the bolt pretension axial force and other factors) and less construction cost. Notably, this analysis showed that the joint behavior of the initial pretension axial force of a bolt is considerably reduced after the axial force of the bolt exceeds the yield strength. A maximum decrease of 50% in the initial pretension axial force under the El Centro N-S Wave ($v_{max}=100cm/s$) was observed. Furthermore, this method can be applied to analyze the seismic responses of general temporary structures in construction sites.

Design and Development Trends of Solar Thermal Power Generation in Korea (국내의 태양열발전 기술개발 동향 및 설계)

  • Kang, Yong-Heack;Kim, Jin-Soo;Kim, Jong-Kyu;Lee, Sang-Nam;Yu, Chang-Kyun;Yoon, Hwan-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.658-661
    • /
    • 2007
  • KIER have been developing high-temperature solar technology, especially the solar thermal power generation system, since the early of 1990s. In 1994, the first research on high temperature solar technology started with PTC technology. At the moment the most advanced 10kW dish system is under demonstration for 10kW solar thermal power generation. Test results showed about 19.2% solar to electricity average efficiency. Another research activities of KIER is hybrid power generation. For hybridization, solar and LFG(landfill gas) are used. Another hybrid solar system is with solar chemical reaction. In this system, power unit is gas turbine, and the heat content of fuel(like natual gas) is upgraded by solar energy through chemical reaction. The latest project on solar thermal power generation is for 1 MW power tower system. This is the Korea-China Joint project.

  • PDF