• Title/Summary/Keyword: Hybrid time domain method

Search Result 87, Processing Time 0.022 seconds

The Effects of Sloshing on the Responses of an LNG Carrier Moored in a Side-by-side Configuration with an Offshore Plant (해양플랜트에 병렬 계류된 LNG 운반선의 거동에 슬로싱이 미치는 영향)

  • Lee, Seung-Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.16-21
    • /
    • 2010
  • During the loading/offloading operation of a liquefied natural gas carrier (LNGC) that is moored in a side-by-side configuration with an offshore plant, sloshing that occurs due to the partially filled LNG tank and the interactive effect between the two floating bodies are important factors that affect safety and operability. Therefore, a time-domain software program, called CHARM3D, was developed to consider the interactions between sloshing and the motion of a floating body, as well as the interactions between multiple bodies using the potential-viscous hybrid method. For the simulation of a floating body in the time domain, hydrodynamic coefficients and wave forces were calculated in the frequency domain using the 3D radiation/diffraction panel program based on potential theory. The calculated values were used for the simulation of a floating body in the time domain by convolution integrals. The liquid sloshing in the inner tanks is solved by the 3D-FDM Navier-Stokes solver that includes the consideration of free-surface non-linearity through the SURF scheme. The computed sloshing forces and moments were fed into the time integration of the ship's motion, and the updated motion was, in turn, used as the excitation force for liquid sloshing, which is repeated for the ensuing time steps. For comparison, a sloshing motion coupled analysis program based on linear potential theory in the frequency domain was developed. The computer programs that were developed were applied to the side-by-side offloading operation between the offshore plant and the LNGC. The frequency-domain results reproduced the coupling effects qualitatively, but, in general, the peaks were over-predicted compared to experimental and time-domain results. The interactive effects between the sloshing liquid and the motion of the vessel can be intensified further in the case of multiple floating bodies.

A Low Complexity SLM-PRSC Hybrid Scheme for OFDM PAPR Reduction (OFDM 신호의 PAPR 감소를 위한 저복잡도의 SLM-PRSC 결합 기법)

  • Han, Seung-Woo;Yang, Suck-Chel;Shin, Yo-An
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.21-22
    • /
    • 2006
  • In this paper, to improve OFDM PAPR reduction performance of the conventional SLM method, we propose an effective SLM-PRSC hybrid scheme based on the repeated utilization of identical PRSC sequences in time domain. In the proposed scheme, after performing the SLM for the frequency domain OFDM symbol excluding the pre-determined PRSC positions, the final SLM-PRSC hybrid sequence with the lowest PAPR, which is generated by adding the time domain PRSC sequence to the results of the SLM is selected as the transmitted OFDM symbol. In particular, since the identical PRSC sequences generated a priori are repeatedly used for every OFDM symbol, excessive IFFT calculations are avoided. Moreover, the selected PRSC symbols in the frequency domain may be utilized as an overhead information for the SLM. Simulation results reveal that the proposed SLM-PRSC hybrid scheme can remarkably improve the PAPR reduction performance of the conventional SLM, while avoiding excessive increase of IFFT and PAPR calculations and the overhead for the SLM.

  • PDF

Digital State Feedback Current Control using the Pole Placement Technique

  • Bae, Hyun-Su;Yang, Jeong-Hwan;Lee, Jae-Ho;Cho, Bo-Hyung
    • Journal of Power Electronics
    • /
    • v.7 no.3
    • /
    • pp.213-221
    • /
    • 2007
  • A digital state feedback control method for the current mode control of DC-DC converters is proposed in this paper. This approach can precisely achieve interleaved current sharing among the converter modules. As the controller design and system analysis are performed in the time domain, the proposed method can easily satisfy the required converter specification by using the pole placement technique. The digital state feedback controller in the continuous and discrete time domain is derived for the robust tracking control. For the verification of the proposed control scheme, a parallel module bi-directional converter in a prototype 42V/14V hybrid automotive power system, which is a design example in the continuous time domain, and a parallel module buck converter, which is a design example in the discrete time domain, are implemented using a TMS320F2812 digital signal processor (DSP).

On a Pitch Alteration Technique in Time-Frequency Hybrid Domain for High Quality Prosody Control of Speech Signal (고음질 운율조절용 시간-주파수 혼성영역 피치변경법)

  • Lee, Sang-Hyo;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.106-109
    • /
    • 1997
  • In the area of the speech synthesis techniques, the waveform coding methods maintain the intelligibility and naturalness of synthetic speech. In order to apply the waveform coding techniques to synthesis by rule, however, we must be able to alter the pitches for prosody control of synthetic speech. In this paper, we propose a new pitch alteration technique in time-frequency hybrid domain, that compensates phase distortion of the cepstral pitch alteration method with time scaling method in the time domain. This method can remove some phase spectrum distortion which is occurred in conjunction point between the waveforms in continued frames. Also, we can obtain little magnitude spectrum distortion below 1.18% for pitch alteration of 200%.

  • PDF

A hybrid DQ-TLBO technique for maximizing first frequency of laminated composite skew plates

  • Vosoughi, Ali R.;Malekzadeh, Parviz;Topal, Umut;Dede, Tayfun
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.509-516
    • /
    • 2018
  • The differential quadrature (DQ) and teaching-learning based optimization (TLBO) methods are coupled to introduce a hybrid numerical method for maximizing fundamental natural frequency of laminated composite skew plates. The fiber(s) orientations are selected as design variable(s). The first-order shear deformation theory (FSDT) is used to obtain the governing equations of the plate. The equations of motion and the related boundary conditions are discretized in space domain by employing the DQ method. The discretized equations are transferred from the time domain into the frequency domain to obtain the fundamental natural frequency. Then, the DQ solution is coupled with the TLBO method to find the maximum frequency of the plate and its related optimum stacking sequences of the laminate. Convergence and applicability of the proposed method are shown and the optimum fundamental frequency parameter of the plates with different skew angle, boundary conditions, number of layers and aspect ratio are obtained. The obtained results can be used as a benchmark for further studies.

FINITE DIFFERENCE METHOD FOR THE TWO-DIMENSIONAL BLACK-SCHOLES EQUATION WITH A HYBRID BOUNDARY CONDITION

  • HEO, YOUNGJIN;HAN, HYUNSOO;JANG, HANBYEOL;CHOI, YONGHO;KIM, JUNSEOK
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.1
    • /
    • pp.19-30
    • /
    • 2019
  • In this paper, we develop an accurate explicit finite difference method for the two-dimensional Black-Scholes equation with a hybrid boundary condition. In general, the correlation term in multi-asset options is problematic in numerical treatments partially due to cross derivatives and numerical boundary conditions at the far field domain corners. In the proposed hybrid boundary condition, we use a linear boundary condition at the boundaries where at least one asset is zero. After updating the numerical solution by one time step, we reduce the computational domain so that we do not need boundary conditions. To demonstrate the accuracy and efficiency of the proposed algorithm, we calculate option prices and their Greeks for the two-asset European call and cash-or-nothing options. Computational results show that the proposed method is accurate and is very useful for nonlinear boundary conditions.

A New Hybrid Method for Nonlinear Soil-Structure Interaction Analysis (비선형 지반-구조물 상호작용해석을 위한 새로운 복합법)

  • 김재민;최준성;이종세
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • This paper presents a novel hybrid time-frequency-domain method for nonlinear soil-structure interaction(SSI) analysis. It employs, in a practical manner, a computer code for equivalent linear SSI analysis and a general-purpose nonlinear finite element program. The proposed method first (calculates dynamic responses on a truncated finite element boundary utilizing an equivalent linear SSI program in the frequency domain. Then, a general purpose nonlinear finite element program is employed to analyze the nonlinear SSI problem in the time domain, in which boundary conditions at the truncated boundary are imposed with the responses calculated in the previous frequency domain SSI analysis, In order to validate the proposed method, seismic response analyses are carried out for a 2-D underground subway station in a multi-layered half-space, For the analyses, a equivalent linear SSI code KIESSI-2D is coupled to ANSYS program. The numerical results indicate that the proposed methodology can be a viable solution for nonlinear SSI problems.

Study on the Strategy of Numerical Modeling for Hybrid Combustion (하이브리드 연소의 수치 모델링 전략에 관한 연구)

  • Yoon, Changjin;Kim, Jinkon;Moon, Heejang
    • Journal of Aerospace System Engineering
    • /
    • v.1 no.2
    • /
    • pp.37-42
    • /
    • 2007
  • This paper proposes a numerical modeling approach to simulate the hybrid combustion phenomena. From the physical understandings of hybrid combustion, the computational domain was separated into three regions: the solid fuel, gas phase reactive flow, and the interface between solid and fluid. Moreover, for the accurate calculation, computational grids for these regions was generated at every time step considering the instantaneous moving interface which are governed by the balance equations using thermal pyrolysis. In the domain of reactive flow, by virtue of diffusion flame structure, turbulent combustion modeling was introduced using either mixture fraction approach or mean reaction rate approach.

  • PDF

A Study on the Variance Based Self-similar Block Search for Fractal Image Compression (프랙탈 이미지 압축을 위한 분산 기반 유사 블록 탐색 연구)

  • Ham, Do-Yong;Kim, Jong-Gu;Kim, Ha-Jin;Wi, Yeong-Cheol
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.1
    • /
    • pp.11-17
    • /
    • 2001
  • Fractal image coding provides many promising qualities including the high compression ratio. The coding process however suffers from the long search time of domain block pool because the size of the domain block pool is often very large. In this paper, we introduce a hybrid domain block pool search method that combines the block classification and the variance based searching. This hybrid method makes use of the fact that the variance of a block is independent of the block classification. Thus, this hybrid method enhances the search speed by up to an O(number of classes) factor over the purely variance based searching method. An experimental result shows that our method enhances the search speed by up to 17 times over the purely variance based searching method. We also propose an adjustable variance based searching method that further enhances the search speed without noticeable loss of image quality.

  • PDF

New Scattering Matrix Model for Modeling Ferrite Media Using the TLM Method

  • Zugari, Asmaa;El Adraoui, Soufiane;Yaich, Mohamed Iben;Khalladi, Mohsine
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.536-541
    • /
    • 2012
  • This paper aims to extend the transmission line matrix method with a hybrid symmetrical condensed node (HSCN) to model ferrite media in the time domain. To take into account the anisotropy and dispersive properties of ferrite media, equivalent current sources are incorporated into supplementary stubs of the original HSCN. The scattering matrix of the proposed HSCN is provided, and the validity of this approach is demonstrated for both transversely and longitudinally magnetized ferrites. Agreement is achieved between the results of this approach and those of the theoretical and the finite-difference time-domain method.