• Title/Summary/Keyword: Hybrid technique

Search Result 1,278, Processing Time 0.028 seconds

A hybrid technique for sinus floor elevation in the severely resorbed posterior maxilla

  • Jung, Ui-Won;Hong, Ji-Youn;Lee, Jung-Seok;Kim, Chang-Sung;Cho, Kyoo-Sung;Choi, Seong-Ho
    • Journal of Periodontal and Implant Science
    • /
    • v.40 no.2
    • /
    • pp.76-85
    • /
    • 2010
  • Purpose: This study aimed to evaluate the effectiveness of the modified sinus floor elevation technique described hereafter as a "hybrid technique," in 11 patients with severely resorbed posterior maxillae. Methods: Eleven patients who received 22 implants in the maxillary premolar and molar areas by the hybrid technique were enrolled in this study. A slot-shaped osteotomy for access was prepared on the lateral wall along the lower border of the sinus floor. The Schneiderian membrane was fully reflected through the lateral slot. Following drilling with the membrane protected by a periosteal elevator, the bone was grafted. All implants were placed simultaneously with sinus augmentation. The cumulative success rate was calculated and clinical parameters were recorded. Radiographic measurements were performed. Results: All implants were well maintained at last follow up (cumulative success rate=100%). The mean residual bone height, augmented bone height, crown-to-implant ratio, and marginal bone loss were $4.1{\pm}1.64mm$, $8.76{\pm}1.77mm$, $1.21{\pm}0.34mm$, and $0.34{\pm}0.72mm$, respectively. Conclusions: Simultaneous implant placement with sinus augmentation by hybrid technique showed successful clinical results over a 2-year observation period and may be a reliable modality for reconstruction of a severely resorbed posterior maxilla.

PRICING OF VULNERABLE POWER EXCHANGE OPTION UNDER THE HYBRID MODEL

  • Jeon, Jaegi;Huh, Jeonggyu;Kim, Geonwoo
    • East Asian mathematical journal
    • /
    • v.37 no.5
    • /
    • pp.567-576
    • /
    • 2021
  • In this paper, we deal with the pricing of vulnerable power exchange option. We consider the hybrid model as the credit risk model. The hybrid model consists of a combination of the reduced-form model and the structural model. We derive the closed-form pricing formula of vulnerable power exchange option based on the change of measure technique.

Hybrid Compensation Technique on Low Elevation Angle Errors for Multibeam Surveillance Radar in Multipath Environment (다중경로 환경에서 다중빔 탐색레이더에 적용 가능한 표적 고각오차 혼성 보정 기법)

  • Kim, Kwan Sung;Chung, Myung Soo;Jung, Chang Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.365-372
    • /
    • 2013
  • The multibeam surveillance radar is a state-of-art of 3D radar technology. It applies the stacked beams realized by a digital beamformer. In this paper, a hybrid compensation technique on elevation angle errors for low elevation angle targets over the sea in multipath radar environments is proposed. The proposed method can be applied to stacked beam radars. Double null algorithm based on maximum likelihood method in 3-D beamspace domain works well unless the phase difference between the two rays(direct and specular path) is close to $0^{\circ}$ and the magnitude of reflection coefficient is close to 0. To overcome these problems, we propose a hybrid compensation technique which uses the selective double null algorithm and the beam-ratio compensation technique for low-elevation errors on a log scale. Results of computer simulation show that the proposed method outperform conventional monopulse method and double null algorithm only under various multipath environments.

Hybrid PN Code Search with Soft-decision Technique (연판정 하이브리드 PN 코드 동기 획득 기법)

  • Lee Seong-Joo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.7A
    • /
    • pp.682-688
    • /
    • 2006
  • In this paper, a soft-decision method for initial PN code acquisition in pilot-channel aided Direct Sequence Code Division Multiple Access (DS-CDMA) systems is proposed in order to improve the acquisition performance. We apply this technique to the conventional hybrid search algorithm and analyze it in terms of mean code acquisition time. For the analysis, we present mathematical model of proposed algorithm and also perform the simulation under IMT-2000 channel models. Numerical results show that our proposed scheme outperforms the conventional one by 0.2 - 0.4 sec with respect to the mean code acquisition time because the soft decision technique can mitigate the possible decline in search performance caused by the use of a hard-decision technique.

Enhancing the Performance of High-Strength Concrete Members Using Hybrid Reinforcing Technique (하이브리드 보강기법을 활용한 고강도 콘크리트 구조 부재의 성능 향상)

  • Yang, Jun-Mo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.479-480
    • /
    • 2010
  • The efforts to achieve high-performance, durable reinforced concrete structures have increased the demands for improving the performance of both the concrete and the reinforcing materials. Researches for the hybrid reinforcing technique, which is maximizing the performance of high-strength concrete structures by applying the combination of high performance reinforcing materials, were performed in this study.

  • PDF

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

Damage detection in structural beam elements using hybrid neuro fuzzy systems

  • Aydin, Kamil;Kisi, Ozgur
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1107-1132
    • /
    • 2015
  • A damage detection algorithm based on neuro fuzzy hybrid system is presented in this study for location and severity predictions of cracks in beam-like structures. A combination of eigenfrequencies and rotation deviation curves are utilized as input to the soft computing technique. Both single and multiple damage cases are considered. Theoretical expressions leading to modal properties of damaged beam elements are provided. The beam formulation is based on Euler-Bernoulli theory. The cracked section of beam is simulated employing discrete spring model whose compliance is computed from stress intensity factors of fracture mechanics. A hybrid neuro fuzzy technique is utilized to solve the inverse problem of crack identification. Two different neuro fuzzy systems including grid partitioning (GP) and subtractive clustering (SC) are investigated for the highlighted problem. Several error metrics are utilized for evaluating the accuracy of the hybrid algorithms. The study is the first in terms of 1) using the two models of neuro fuzzy systems in crack detection and 2) considering multiple damages in beam elements employing the fused neuro fuzzy procedures. At the end of the study, the developed hybrid models are tested by utilizing the noise-contaminated data. Considering the robustness of the models, they can be employed as damage identification algorithms in health monitoring of beam-like structures.

A Study on MC DS-CDMA with Subcarrier-Spacing over Nakagami-m Fading Channel (나카가미-m 페이딩 채널에서 부반송파 간격에 따른 MC DS-CDMA 시스템에 관한 연구)

  • Kim Won-Sub;Park Jin-Soo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.12 s.91
    • /
    • pp.1199-1206
    • /
    • 2004
  • In this paper, we analyzed the orthogonal MC DS-CDMA system and no-overlapping MC DS-CDMA System, which were divided by the normalized spacing between adjacent subcarrier over Nakagami-m fading channels. In order to reduce the number of selective paths occurring in the MC system, the Hybrid SCMRC technique was applied, which was compared with the case when the MRC technique was used. As a result of simulations, it was found that the Hybrid SC/MRC method could be replaced by the MRC method and if the number of subcarriers was increased when the given bandwidth was fixed, the interval between subcarriers increased and bigger bandwidths were required. an, the number or subcarriers should be selected in consideration or given bandwidth.

Hybrid Indoor Position Estimation using K-NN and MinMax

  • Subhan, Fazli;Ahmed, Shakeel;Haider, Sajjad;Saleem, Sajid;Khan, Asfandyar;Ahmed, Salman;Numan, Muhammad
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.9
    • /
    • pp.4408-4428
    • /
    • 2019
  • Due to the rapid advancement in smart phones, numerous new specifications are developed for variety of applications ranging from health monitoring to navigations and tracking. The word indoor navigation means location identification, however, where GPS signals are not available, accurate indoor localization is a challenging task due to variation in the received signals which directly affect distance estimation process. This paper proposes a hybrid approach which integrates fingerprinting based K-Nearest Neighbors (K-NN) and lateration based MinMax position estimation technique. The novel idea behind this hybrid approach is to use Euclidian distance formulation for distance estimates instead of indoor radio channel modeling which is used to convert the received signal to distance estimates. Due to unpredictable behavior of the received signal, modeling indoor environment for distance estimates is a challenging task which ultimately results in distance estimation error and hence affects position estimation process. Our proposed idea is indoor position estimation technique using Bluetooth enabled smart phones which is independent of the radio channels. Experimental results conclude that, our proposed hybrid approach performs better in terms of mean error compared to Trilateration, MinMax, K-NN, and existing Hybrid approach.

A Double-Hybrid Spread-Spectrum Technique for EMI Mitigation in DC-DC Switching Regulators

  • Dousoky, Gamal M.;Shoyama, Masahito;Ninomiya, Tamotsu
    • Journal of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.342-350
    • /
    • 2010
  • Randomizing the switching frequency (RSF) to reduce the electromagnetic interference (EMI) of switching power converters is a well-known technique that has been previously discussed. The randomized pulse position (RPP) technique, in which the switching frequency is kept fixed while the pulse position (the delay from the starting of the switching cycle to the turn-on instant within the cycle) is randomized, has been previously addressed in the literature for the same purpose. This paper presents a double-hybrid technique (DHB) for EMI reduction in dc-dc switching regulators. The proposed technique employed both the RSF and the RPP techniques. To effectively spread the conducted-noise frequency spectrum and at the same time attain a satisfactory output voltage quality, two parameters (switching frequency and pulse position) were randomized, and a third parameter (the duty ratio) was controlled by a digital compensator. Implementation was achieved using field programmable gate array (FPGA) technology, which is increasingly being adopted in industrial electronic applications. To evaluate the contribution of the proposed DHB technique, investigations were carried out for each basic PWM, RPP, RSF, and DHB technique. Then a comparison was made of the performances achieved. The experimentally investigated features include the effect of each technique on the common-mode, differential-mode, and total conducted-noise characteristics, and their influence on the converter’s output ripple voltage.