• Title/Summary/Keyword: Hybrid technique

Search Result 1,282, Processing Time 0.026 seconds

Nondestructive Evaluation on Strength Characteristic and Damage Behavior of Al 7075/CFRP Sandwich Composite (Al 7075/CFRP 샌드위치 복합재료의 강도 및 손상특성에 대한 비파괴 평가)

  • Lee, Jin-Kyung;Yoon, Han-Ki;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2328-2335
    • /
    • 2002
  • A hybrid composite material has many potential usage due to the high specific strength and the resistance to fatigue, when compared to other composite materials such as fiber reinforced plastic(FRP) and metal matrix composite(MMC). However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. In this study, Al 7075 sheets and carbon epoxy preprags were used to fabricate the hybrid composite. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. AE technique was used to clarify the microscopic damage behavior and failure mechanism of A17075/CFRP hybrid composite. It was found that AE paralneters such as AE event, energy and amplitude were effective to evaluate the failure process of Al 7075/CFRP composite. In addition, the relationship between the AE signal and the characteristics of fracture surface using optical microscope was discussed.

A Hybrid Simulation Technique for Cell Loss Probability Estimation of ATM Switch (ATM스위치의 쎌 손실율 추정을 위한 Hybrid 시뮬레이션 기법)

  • 김지수;최우용;전치혁
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.3
    • /
    • pp.47-61
    • /
    • 1996
  • An ATM switch must deal with various kinds of input sources having different traffic characteristics and it must guarantee very small value of cel loss probability, about 10$^{8}$ -10$^{12}$ , to deal with loss-sensitive traffics. In order to estimate such a rate event probability with simulation procedure, a variance reduction technique is essential for obtaining an appropriate level of precision with reduced cost. In this paper, we propose a hybrid simulation technique to achieve reduction of variance of cell loss probability estimator, where hybrid means the combination of analytical method and simulation procedure. A discrete time queueing model with multiple input sources and a finite shared buffer is considered, where the arrival process at an input source and a finite shared buffer is considered, where the arrival process at an input source is governed by an Interrupted Bernoulli Process and the service rate is constant. We deal with heterogeneous input sources as well as homogeneous case. The performance of the proposed hybrid simulation estimator is compared with those of the raw simulation estimator and the importance sampling estimator in terms of variance reduction ratios.

  • PDF

A Study on Photovoltaic/Wind/Diesel Hybrid Power System

  • Cho Jun-Seok;Gho Jae-Seok;Kim Kyung-Hyun;Choe Gyu-Ha;Kim Eung-Sang;Lee Chang-Sung
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.698-702
    • /
    • 2001
  • In this paper, to solve the defect of stand-alone type power system in a remote area, a hybrid power system with photovoltaic/wind/diesel generators is proposed. A hybrid power system has a power-balanced controller to equilibrate generation power with a given load demand and which is composed of common DC power system. To execute a power-balanced control, a hybrid power system is assumed that all of power generators have the characteristics of an equivalent current-source and load sharing control technique must be needed at the same time. So this paper describes the algorithm of interactive technique for design of a hybrid power system.

  • PDF

Determination of Precise Regional Geoid Heights on and around Mount Jiri, South Korea

  • Lee, Suk-Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Precise regional geoid heights on and around Mount Jiri were calculated and were compared to the KNGeoid14 (Korean National Geoid 2014) model. In this study, gravimetric geoid heights were calculated by using RCR (Remove-Compute-Restore) technique and then hybrid geoid heights were calculated by using the LSC (Least Square Collocation) method in the same area. In addition, gravity observation and GNSS(Global Navigation Satellite System) surveying performed in this study were utilized to determine gravimetric geoid heights and to compute hybrid geoid heights, respectively. The results of the study show that the post-fit error (mean and standard deviation) of hybrid geoid heights was evaluated as $0.057{\pm}0.020m$, while the mean and standard deviation of the differences were -0.078 and 0.085 m, respectively for KNGeoid14. Therefore, hybrid geoid heights in this study show more considerable progress than KNGeoid14.

Hybrid Algorithm of Space Time and Space Frequency Block Coding Technique using Alternate Time Switch (교번 스위치를 활용한 시공간 및 주파수공간 블록 코딩의 하이브리드 알고리즘)

  • Jung, Hyeok Koo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.1
    • /
    • pp.48-52
    • /
    • 2017
  • This paper proposes a hybrid algorithm of space-time block coding and space-frequency block coding using alternate time switch. The traditional alternate time-switched space-time or space-frequency block coding technique for orthogonal frequency division multiplexing system does not provide a good performance with a variety of communication environments. This hybrid algorithm has searched good performance ranges in various environments in view points of mobile speed and doppler frequency. In this paper, we investigate better performance ranges for two algorithms, suggest a hybrid algorithm for dynamically changing communication environments, propose a structure for transmitter and receiver, and show that its performance is better than the traditional algorithm by simulations.

Precise Estimations on Vorticities using a Hybrid PTV-PIV Algorithm (하이브리드 PTV-PIV알고리듬에 의한 고정밀 와도 추정)

  • Doh, Deog-Hee;Cho, Gyong-Rae;Lee, Jae-Min
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.4
    • /
    • pp.26-30
    • /
    • 2010
  • A PTV algorithm was constructed using a linear transformation, in which the merits of the conventional PIV and PTV were adopted. In PIV calculations, the obtained velocity vectors are affected by the filtering effects by its calculation principle. PTV techniques are widely used for their excellences of measuring small scaled flows, such as nano and bio flows. However, PTVs produce vector errors due to interpolation process. To overcome these problems, a hybrid PTV algorithm was constructed by combining PTVs' and PIVs' benefits using a linear transformation. The Taylor-Green vortex flows were generated for the tests of vorticity calculations. The conventional gray-level cross-correlation PIV technique and 2-Frame PTV technique were tested for the same flows for comparisons with those obtained by the constructed hybrid algorithm. The excellence of the constructed hybrid algorithm was validated through an actual experiment on the cylinder wake.

Hybrid Structural Control System Design Using Preference-Based Optimization (선호도 기반 최적화 방법을 사용한 복합 구조 제어 시스템 설계)

  • Park, Won-Suk;Park, Kwan-Soon;Koh, Hyun-Moo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.401-408
    • /
    • 2006
  • An optimum design method for hybrid control systems is proposed in this study. By considering both active and passive control systems as a combined or a hybrid system, the optimization of the hybrid system can be achieved simultaneously. In the proposed approach, we consider design parameters of active control devices and the elements of the feedback gain matrix as design variables for the active control system. Required quantity of the added dampers are also treated as design variables for the passive control system. In the proposed method, the cost of both active and passive control devices, the required control efforts and dynamic responses of a target structure are selected as objective functions to be minimized. To effectively address the multi-objective optimization problem, we adopt a preference-based optimization model and apply a genetic algorithm as a numerical searching technique. As an example to verify the validity of the proposed optimization technique, a wind-excited 20-storey building with hybrid control systems is used and the results are presented.

  • PDF

Verification of Hybrid Structural Test Technique by Shaking Table Test of a Linear 2-Dimensional Frame Model (소형선형 평면뼈대모형의 진동대실험을 통한 하이브리드실험 기법의 검증)

  • Cho, Sung-Min;Choi, In-Gyu;Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.33-43
    • /
    • 2010
  • This paper deals with the hybrid structural test technique which has been introduced and studied currently in Korea. In this study, a Mini-MOST system which was developed as a part of NEES research was modified and improved to reduce the total simulation time to half of the original system. Using the proposed system together with the 2 dimensional small steel frame specimen, the validity and efficiency of the hybrid test technique is investigated. Even though the hybrid test has been developed as an alternative to the shaking table test and has been studied and applied for a long time in several countries, no attempt has been made to compare it directly with the shaking table test. Therefore, in this study, the hybrid test results are compared with those of the shaking table test as well as with a numerical simulation for the verification of hybrid test. From the comparison and analysis of the test results, it is concluded that the hybrid test can simulate the actual seismic behavior of structural systems very accurately and it can be a good alternative to the shaking table test.

Numerical Verification of Hybrid Optimization Technique for Finite Element Model Updating (유한요소모델개선을 위한 하이브리드 최적화기법의 수치해석 검증)

  • Jung, Dae-Sung;Kim, Chul-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.19-28
    • /
    • 2006
  • Most conventional model updating methods must use mathematical objective function with experimental modal matrices and analytical system matrices or must use information about the gradient or higher derivatives of modal properties with respect to each updating parameter. Therefore, most conventional methods are not appropriate for complex structural system such as bridge structures due to stability problem in inverse analysis with ill-conditions. Sometimes, moreover, the updated model may have no physical meaning. In this paper, a new FE model updating method based on a hybrid optimization technique using genetic algorithm (GA) and Holder-Mead simplex method (NMS) is proposed. The performance of hybrid optimization technique on the nonlinear problem is demonstrated by the Goldstein-Price function with three local minima and one global minimum. The influence of the objective function is evaluated by the case study of a simulated 10-dof spring-mass model. Through simulated case studies, finally, the objective function is proposed to update mass as well as stiffness at the same time. And so, the proposed hybrid optimization technique is proved to be an efficient method for FE model updating.

Comparison of shaping ability using LightSpeed, ProTaper and Hybrid technique in simulated root canals (모조 레진블락 근관에서 LightSpeed, ProTaper 및 Hybrid technique의 성형 효율 비교)

  • Kang, Soon-Il;Kwak, Sang-Won;Park, Jeong-Kil;Hur, Bock;Kim, Hyeon-Cheol
    • The Journal of the Korean dental association
    • /
    • v.47 no.7
    • /
    • pp.444-454
    • /
    • 2009
  • The purpose of this study was to compare the shaping abilities of LightSpeed, ProTaper-Universal, and hybrid technique using S-series of ProTaper-Universal and LigthSpeed. The 72 simulated root canals of J-shape were used and classified as flowing 3 groups according to the instrumentation methods; Group P of 24 canal blocks were prepared with ProTaper-Universal, Group L was prepared with LightSpeed, and Group H was prepared with hybrid technique (initial shaping with ProTaper-Universal SI and S2 and apical shaping with LightSpeed from #25 to #50). A second-year resident of Endodontic department prepared the resin block canals to apical size #50 (F5 in Group P). The time lapses for instrumentation and the reduction of root canal curvature after shaping were measured. The pre- and post-instrumented root canals were scanned and superimposed to evaluate and calculate the increased canal width and apical centering ratio. The results were as followings: Group Land H showed significant less instrumentation time than Group P (p < 0.05). The ProTaper system showed greater reduction of root canal curvature and working length diminishment than other methods (p < 0.05). LightSpeed system showed best canal curvature preserving characteristics. The Group P had greater instrumented widths at all levels examined (p < 0.05). Group L and Group H showed lower centering ratio (ability to preserve the canal center; the lower ratio means the better canal center preservation) than Group P (p < 0.05). Group H had the lowest centering ratio at the 1 mm level.

  • PDF