• Title/Summary/Keyword: Hybrid solar cell

Search Result 133, Processing Time 0.039 seconds

Solution-Processed Nontoxic and Abundant $Cu_2ZnSnS_4$ for Thin-Film Solar Cells

  • Mun, Ju-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.65-65
    • /
    • 2012
  • Copper zinc tin sulfide ($Cu_2ZnSnS_4$, CZTS) is a very promising material as a low cost absorber alternative to other chalcopyrite-type semiconductors based on Ga or In because of the abundant and economical elements. In addition, CZTS has a band-gap energy of 1.4~1.5eV and large absorption coefficient over ${\sim}10^4cm^{-1}$, which is similar to those of $Cu(In,Ga)Se_2$(CIGS) regarded as one of the most successful absorber materials for high efficient solar cell. Most previous works on the fabrication of CZTS thin films were based on the vacuum deposition such as thermal evaporation and RF magnetron sputtering. Although the vacuum deposition has been widely adopted, it is quite expensive and complicated. In this regard, the solution processes such as sol-gel method, nanocrystal dispersion and hybrid slurry method have been developed for easy and cost-effective fabrication of CZTS film. Among these methods, the hybrid slurry method is favorable to make high crystalline and dense absorber layer. However, this method has the demerit using the toxic and explosive hydrazine solvent, which has severe limitation for common use. With these considerations, it is highly desirable to develop a robust, easily scalable and relatively safe solution-based process for the fabrication of a high quality CZTS absorber layer. Here, we demonstrate the fabrication of a high quality CZTS absorber layer with a thickness of 1.5~2.0 ${\mu}m$ and micrometer-scaled grains using two different non-vacuum approaches. The first solution-processing approach includes air-stable non-toxic solvent-based inks in which the commercially available precursor nanoparticles are dispersed in ethanol. Our readily achievable air-stable precursor ink, without the involvement of complex particle synthesis, high toxic solvents, or organic additives, facilitates a convenient method to fabricate a high quality CZTS absorber layer with uniform surface composition and across the film depth when annealed at $530^{\circ}C$. The conversion efficiency and fill factor for the non-toxic ink based solar cells are 5.14% and 52.8%, respectively. The other method is based on the nanocrystal dispersions that are a key ingredient in the deposition of thermally annealed absorber layers. We report a facile synthetic method to produce phase-pure CZTS nanocrystals capped with less toxic and more easily removable ligands. The resulting CZTS nanoparticle dispersion enables us to fabricate uniform, crack-free absorber layer onto Mo-coated soda-lime glass at $500^{\circ}C$, which exhibits a robust and reproducible photovoltaic response. Our simple and less-toxic approach for the fabrication of CZTS layer, reported here, will be the first step in realizing the low-cost solution-processed CZTS solar cell with high efficiency.

  • PDF

Independent MPP Tracking Method of Hybrid Solar-Wind Power Conditioning Systems Using Integrated Dual-Input Single-PWM-Cell Converter Topology

  • Thenathayalan, Daniel;Ahmed, Ashraf;Choi, Byung-Min;Park, Jeong-Hyun;Park, Joung-Hu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.790-802
    • /
    • 2017
  • This paper proposes the modeling and control strategy to track the MPPs of hybrid PV and Wind power systems, using a new dual input boost converter. The dual input power conditioning system with an independent MPPT control scheme is introduced with minimum number of circuit elements in order to reduce the switching loss, size and cost of the system. Since the operating conditions for the PV and Wind power systems are very distinct from each other, an efficient and superior control system is required to track the MPPs of both renewable sources with the use of a simply-structured single-ended single-inductor converter. The design of Power-Conditioning System (PCS) and detail control strategy are presented in this paper. To provide independent tracking of MPPs, a variable duty-cycle control strategy is employed for the wind system and a variable frequency strategy is employed for the PV system. Finally, the proposed dual-input converter for hybrid power conditioning system is implemented and the hardware test results are presented. From the hardware experiment, it is concluded that the proposed system successfully tracks the MPPs of both of the renewable power systems independently.

A Study on the I-V and I-P Characteristics for Optimized Operation of PEMFC (고분자 전해질형 연료전지의 최적운전을 위한 전압-전류, 전류-전력 특성 연구)

  • Jung, You-Ra;Choi, Young-Sung;Lee, Kyung-Sup
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.1
    • /
    • pp.112-116
    • /
    • 2010
  • Fuel cell as a renewable energy source is clean and has a lot of advantages. The source can solve energy crisis and environmental problems such as greenhouse effect, air pollution and the ozone layer destruction. This paper introduces hybrid system(hydro-Genius Professional, heliocentris) of solar cell and fuel cell. Also, this paper shows the I-P, V-I characteristics of fuel cells which are connected in parallel and series. From these results, we also found the maximum power was transferred at 0.5[${\Omega}$]. The terminal voltage was also decreased according to the current because of the internal resistance. The power transfer in series was two times than that in parallel.

Influence of thermal annealing on hybrid Organic Solar Cell with ZnO nanowire

  • Park, Seong-Hwak;Kim, Jong-Hyeon;Jo, Jin-U;Kim, Seong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.317-317
    • /
    • 2010
  • ZnO나노와이어는 높은 투과도, 화학 및 열적 안정성을 가지며, 유기태양전지에 적용하였을 때 Active Layer의 표면적 증가, 전자의 수집 및 전달에 용이한 장점가지고 있어 하이브리드 유기 태양전지에 적용되고 있다. ZnO나노와이어와 P3HT/PCBM을 사용한 하이브리드 유기태양전지는 Active Layer의 열처리 온도를 변화시켜 ITO/AZO/ZnO wire/PCBM:P3HT/PEDOT:PSS/Ag구조로 제작되었다. ZnO나노와이어는 AZO를 Seed로 사용하고 Znc nitrate hydrate와 hexamethylenetetramine을 혼합하여 수열합성법으로 성장 후, P3HT:PCBM, PEDOT:PSS을 Spin Coating법으로 형성하였다. UV-vis와 Solar simulator를 통하여 Active Layer의 열처리 온도에 따른 태양전지의 특성을 분석하였다.

  • PDF

Solvent effects on ZnO based organic inorganic hybrid solar cell.

  • Kim, Yeong-Tae;Park, Mi-Yeong;Park, Seon-Yeong;Lee, Gyu-Hwan;Kim, Yang-Do;Jeong, Yong-Su;Im, Dong-Chan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.152-152
    • /
    • 2009
  • 유기태양전지 Solvent인 1-2-Dichlorobenzene(DCB)에 1-Bromonaphtalene(BN)을 첨가하여 Air분위기에서 ZnO film을 이용한 유/무기 복합 태양전지를 만들었다. 셀의 구조는 ITO/ZnO nanofilm/Poly(3-hexylthiophene(P3HT):[6,6]-Phenyl C60-Butyric acid methyl ester(PCBM)/PEDOT:PSS/Ag로 제작했다. 두께 70nm ZnO film은 전기화학적 방법으로 ITO위에 전착하였다. AM1.5조건에서 Solar simulator로 측정한 결과 BN을 첨가한 셀에서 Jsc값이 증가되었다. Jsc값의 증가는 BN이 결정화를 향상시켜 효율이 증가됨을 확인하였다.

  • PDF

Power Enhance Effect on the Hybrid Cell Based on Direct Current Nanogenerator and an Organic Photovoltaic Device

  • Yun, Gyu-Cheol;Sin, Gyeong-Sik;Lee, Geun-Yeong;Lee, Ju-Hyeok;Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.298-298
    • /
    • 2013
  • Finding renewable and clean energy resources is essential research to solve global warming and depletion of fossil fuels in modern society. Recently, complex harvesting of energy from multiple sources is available in our living environments using a single device has become highly desirable, representing a new trend in energy technologies. We report that when simultaneously driving the fusion and composite cells of two or more types, it is possible to make an affect the other cells to obtain a greater synergistic effect. To understand the coupling effect of photovoltaic and piezoelectric device, we fabricate the serially integrated hybrid cell (s-HC) based on organic solar cell (OSC) and piezoelectric nanogenerator (PNG). The size of increased voltage peaks when OSC and PNG are working on is larger than the case when only PNG is working. This voltage difference is the Voc change of OSC, not the voltage change of PNG and current density difference between these two cases is manifested more clearly. When the OSC and PNG are working in s-HC at the same time, piezoelectric potential (VPNG) is generated in ZnO and theoretical total voltage is sum of voltage of an OSC (VOSC) and VPNG. However, electrons from OSC are influenced by piezoelectric potential in ZnO and current loss of OSC in whole circuit decreases. As a result, VOSC increases temporarily. Current shows the similar behavior. PNG acts a resistance in the whole circuit and current loss occurs when the electrons from OSC pass through the PNG. But piezoelectric potential recover current loss and decrease the resistance of PNG. Our PNG can maintain piezoelectric potential when the strain is held owing to the LDH layer while general PNG cannot maintain piezoelectric potential. During the section that strain is held, voltage enhancement effect is maintained and same effect appeared even turn off the light. Actually at this time, electrons in ZnO nanosheets move to LDH and trapped by the positive charges in this layer. After this strain is held, piezoelectric potential of ZnO nanosheets is disappeared but potential difference which is developed by negative charge dominant LDH layer is remained. This potential acts similar role like piezoelectric potential in ZnO. Electrons from the OSC also are influenced by this potential and the more current flows.

  • PDF

Synthesis of Amorphous Er3+-Yb3+ Co-doped TiO2 and Its Application as a Scattering Layer for Dye-sensitized Solar Cells

  • Han, Chi-Hwan;Lee, Hak-Soo;Lee, Kyung-Won;Han, Sang-Do;Singh, Ishwar
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.219-223
    • /
    • 2009
  • $TiO_2$ doped with $Er^{3+\;and\;Yb^{3+}$ was used for fabricating a scattering layer and a nano-crystalline $TiO_2$ electrode layer to be used in dye-sensitized solar cells. The material was prepared using a new sol-gel combustion hybrid method with acetylene black as fuel. The $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide powder synthesized at 700oC had embossed structure morphology with a size between 27 to 54 nm that agglomerated to produce micron size particles, as observed by the scanning electron micrographs. The XRD patterns showed that the $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide had an amorphous structure, while using the same method without doping $Er^{3+}\;or\;Yb^{3+},\;TiO_2$ was obtained in the crystallite form with thea dominance of rutile phase. Fabricating a bilayer structure consisting of nano-crystalline $TiO_2$ and the synthesized $Er^{3+}$-$Yb^{3+}$ co-doped titanium oxide showed better scattering property, with an overall increase of 15.6% in efficiency of the solar cell with respect to a single nano-crystalline $TiO_2$ layer.

Synergy study on charge transport dynamics in hybrid organic solar cell: Photocurrent mapping and performance analysis under local spectrum

  • Hong, Kai Jeat;Tan, Sin Tee;Chong, Kok-Keong;Lee, Hock Beng;Ginting, Riski Titian;Lim, Fang Sheng;Yap, Chi Chin;Tan, Chun Hui;Chang, Wei Sea;Jumali, Mohammad Hafizuddin Hj
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1564-1570
    • /
    • 2018
  • Charge transport dynamics in ZnO based inverted organic solar cell (IOSC) has been characterized with transient photocurrent spectroscopy and localised photocurrent mapping-atomic force microscopy. The value of maximum exciton generation rate was found to vary from $2.6{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=79.7A\;m^{-2}$) to $2.9{\times}10^{27}m^{-3}s^{-1}$ ($J_{sat}=90.8A\;m^{-2}$) for devices with power conversion efficiency ranging from 2.03 to 2.51%. These results suggest that nanorods served as an excellent electron transporting layer that provides efficient charge transport and enhances IOSC device performance. The photovoltaic performance of OSCs with various growth times of ZnO nanorods have been analysed for a comparison between AM1.5G spectrum and local solar spectrum. The simulated PCE of all devices operating under local spectrum exhibited extensive improvement with the gain of 13.3-3.7% in which the ZnO nanorods grown at 15 min possess the highest PCE under local solar with the value of 2.82%.

A Study on the Design of Solar Hybrid Generating System for a Ship (선박용 태양광 하이브리드 발전시스템 개념 설계)

  • Choi, Han-Kyu;Kim, Hee-Je;Lee, Kyung-Jun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.29
    • /
    • pp.2-15
    • /
    • 2010
  • 국제적으로 해운분야 등 온실가스 배출량 규제를 강화하고 있으며, 정부에서도 '저탄소 녹색성장'을 위한 신재생 에너지 비율을 확대 추진함에 따라 육상 녹색성장을 위한 시도는 활발히 이루어지고 있으나, 친환경 에너지를 선박에 이용한 노력은 부족한 실정이다. 또한 현재까지 연구된 태양광 시스템의 경우 기존 선박의 동력을 대체하여 추진용으로 사용하기에는 실용성이 없으므로, 기존 선박 발전시스템을 연계한 태양광 하이브리드 발전시스템의 연구개발이 필요하며, 따라서 태양광을 선박용 에너지로 활용하기 위한 선박용 하이브리드 발전 시스템 개념 설계 및 설치 기준에 대하여 고찰하고자 한다.

  • PDF