• 제목/요약/키워드: Hybrid renewable power systems

검색결과 66건 처리시간 0.025초

Modeling and Regulator Design for Three-Input Power Systems with Decoupling Control

  • Li, Yan;Zheng, Trillion Q.;Zhao, Chuang;Chen, Jiayao
    • Journal of Power Electronics
    • /
    • 제12권6호
    • /
    • pp.912-924
    • /
    • 2012
  • In hybrid renewable power systems, the use of a multiple-input dc/dc converter (MIC) leads to simpler circuit and lower cost, when compared to the conventional use of several single-input converters. This paper proposed a novel three-input buck/boost/buck-boost converter, which can be used in applications with various values of input voltage. The energy sources in this converter can deliver power to the load either simultaneously or individually in one switching period. The steady relationship, the power management strategy and the small-signal circuit model of this converter have been derived. With decoupling technology, modeling and regulator design can be obtained under multi-loop control modes. Finally, three generating methods of a multiple-input buck/boost/buck-boost converter is given, and this method can be extended to the other multiple-input dc/dc converters.

MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계 (Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink)

  • 미흐렛 가아브레슬라세 마루;김민;변기식;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

파력-해상풍력 복합발전을 위한 대형 반잠수식 플랫폼의 개념설계 (Conceptual Design of Large Semi-submersible Platform for Wave-Offshore Wind Hybrid Power Generation)

  • 김경환;이강수;손정민;박세완;최종수;홍기용
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제18권3호
    • /
    • pp.223-232
    • /
    • 2015
  • 본 연구에서는 부유식 파력-해상풍력 연계형 발전시스템의 기반구조물 개념설계에 대한 내용을 다루고 있다. 세계적으로 해양 신재생에너지에 대한 관심이 커져가고 있다. 파력과 해상풍력은 다른 해양에너지원과 더불어 주요 관심이 되는 에너지원으로서 발전적지가 대체로 일치한다는 특징이 있다. 따라서 파력과 해상풍력을 복합하여 발전하는 시스템은 경제적으로 많은 이점이 있고 이미 여러 나라에서 파력-해상풍력 복합발전 시스템을 개발하고 있다. 이에 따라 우리나라에서도 10MW급의 파력-해상풍력 복합발전 시스템을 개발하기 위한 연구가 수행되었다. 본 연구에서는 다수 풍력발전기와 파력발전기의 배치를 고려하여 반잠수식 구조물이 설계되었다. 또한 설치해역의 환경을 고려하여 계류시스템과 파워케이블이 설계되었다. 본 논문에서는 이러한 복합발전 플랫폼의 개념설계 결과를 제시하고 다양한 발전시스템의 배치를 고려한 설계상의 어려움을 토의하고 설계 방법을 제시한다.

태양광-배터리 하이브리드 전원시스템의 에너지 효율개선을 위한 규칙기반 협조제어 원리 (Rule-based Coordination Algorithms for Improving Energy Efficiency of PV-Battery Hybrid System)

  • 유철희;정일엽;홍성수;장병준
    • 전기학회논문지
    • /
    • 제61권12호
    • /
    • pp.1791-1800
    • /
    • 2012
  • This paper presents effective design schemes for a photovoltaic (PV) and battery hybrid system that includes state-of-the-art technologies such as maximum power point tracking scheme for PV arrays, an effective charging/discharging circuit for batteries, and grid-interfacing power inverters. Compared to commonly-used PV systems, the proposed configuration has more flexibility and autonomy in controlling individual components of the PV-battery hybrid system. This paper also proposes an intelligent coordination scheme for the components of the PV-battery hybrid system to improve the efficiency of renewable energy resources and peak-load management. The proposed algorithm is based on a rule-based expert system that has excellent capability to optimize multi-objective functions. The proposed configuration and algorithms are investigated via switching-level simulation studies of the PV-battery hybrid system.

기후 시나리오 SSP5와 SSP1에서의 2100년 서울 지역에서의 여름철 주택 냉방을 위한 하이브리드 제습 냉방 시스템 성능 분석 (Performance Analysis of a Hybrid Desiccant Cooling System for Residential Air Conditioning in the Seoul Region under the Climate Scenarios SSP5 and SSP1)

  • 이율호;박성진
    • 한국수소및신에너지학회논문집
    • /
    • 제34권6호
    • /
    • pp.773-784
    • /
    • 2023
  • In this study, a comparative analysis between an electric heat pump cooling system and a hybrid desiccant cooling system is conducted. Desiccant cooling is a thermal driven system with potentially lower electric power consumption than electric heat pump. Hybrid desiccant cooling system simulation includes components such as a desiccant rotor, direct and indirect evaporative coolers, heat exchangers, fans, and a heat pump system. Using dynamic simulations by climate conditions, house cooling temperatures and power consumption for both systems are analyzed for 16 days period in the summer season under climate scenarios for the year 2100 prediction. The results reveal that the hybrid desiccant cooling system exhibits a 5-18% reduction in electric consumption compared to the heat pump system.

A Wide Voltage-Gain Range Asymmetric H-Bridge Bidirectional DC-DC Converter with a Common Ground for Energy Storage Systems

  • Zhang, Yun;Gao, Yongping;Li, Jing;Sumner, Mark
    • Journal of Power Electronics
    • /
    • 제18권2호
    • /
    • pp.343-355
    • /
    • 2018
  • A wide-voltage-conversion range bidirectional DC-DC converter is proposed in this paper. The topology is comprised of one typical LC energy storage component and a special common grounded asymmetric H-bridge with four active power switches/anti-parallel diodes. The narrow output PWM voltage is generated from the voltage difference between two normal (wider) output PWM voltages from the asymmetric H-bridge with duty cycles close to 0.5. The equivalent switching frequency of the output PWM voltage is double the actual switching frequency, and a wide step-down/step-up ratio range is achieved. A 300W prototype has been constructed to validate the feasibility and effectiveness of the proposed bidirectional converter between the variable low voltage side (24V~48V) and the constant high voltage side (200V). The slave active power switches allow ZVS turn-on and turn-off without requiring any extra hardware. The maximum conversion efficiency is 94.7% in the step-down mode and 93.5% in the step-up mode. Therefore, the proposed bidirectional topology with a common ground is suitable for energy storage systems such as renewable power generation systems and electric vehicles with a hybrid energy source.

하이브리드 모델을 이용하여 중단기 태양발전량 예측 (Mid- and Short-term Power Generation Forecasting using Hybrid Model)

  • 손남례
    • 한국산업융합학회 논문집
    • /
    • 제26권4_2호
    • /
    • pp.715-724
    • /
    • 2023
  • Solar energy forecasting is essential for (1) power system planning, management, and operation, requiring accurate predictions. It is crucial for (2) ensuring a continuous and sustainable power supply to customers and (3) optimizing the operation and control of renewable energy systems and the electricity market. Recently, research has been focusing on developing solar energy forecasting models that can provide daily plans for power usage and production and be verified in the electricity market. In these prediction models, various data, including solar energy generation and climate data, are chosen to be utilized in the forecasting process. The most commonly used climate data (such as temperature, relative humidity, precipitation, solar radiation, and wind speed) significantly influence the fluctuations in solar energy generation based on weather conditions. Therefore, this paper proposes a hybrid forecasting model by combining the strengths of the Prophet model and the GRU model, which exhibits excellent predictive performance. The forecasting periods for solar energy generation are tested in short-term (2 days, 7 days) and medium-term (15 days, 30 days) scenarios. The experimental results demonstrate that the proposed approach outperforms the conventional Prophet model by more than twice in terms of Root Mean Square Error (RMSE) and surpasses the modified GRU model by more than 1.5 times, showcasing superior performance.

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • 제15권5호
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.

Impacts of green technologies in distribution power network

  • Suwanapingkarl, Pasist;Singhasathein, Arnon;Phanthuna, Nattaphong;Boonthienthong, Manat;Srivallop, Kwanchanok;Ketken, Wannipa
    • International Journal of Advanced Culture Technology
    • /
    • 제3권1호
    • /
    • pp.90-100
    • /
    • 2015
  • Green technologies such as renewable energy resources, Electric Vehicles and Plug-in Hybrid Electric Vehicles (EVs/PHEVs), electric locomotives, etc. are continually increasing at the existing power network especially distribution levels, which are Medium Voltage (MV) and Low Voltage (LV). It can be noted that the increasing level of green technologies is driven by the reduction emission policies of carbon dioxide ($CO_2$). The green technologies can affect the quality of power, and hence its impacts of are analysed. In practical, the environment such as wind, solar irradiation, temperature etc. are uncontrollable, and therefore the output power of renewable energy in that area can be varied. Moreover, the technology of the EVs/PHEVs is still developed in order to improve the performance of supply and driving systems. This means that these developed can cause harmonic distortion as the control system is mostly used power electronics. Therefore, this paper aims to analyse the voltage variation and harmonic distortion in distribution power network in urban area in Europe due to the combination between wind turbine, hydro turbine, photovoltaic (PV) system and EVs/PHEVs. More realistic penetration levels of SSDGs and EVs/PHEVs as forecasted for 2020 is used to analyse. The dynamic load demands are also taken into account. In order to ensure the accurate of simulation results, the practical parameters of distribution system are used and the international standards such as Institute of Electrical and Electronics Engineers (IEEE) standards are also complied. The suggestion solutions are also presented. The MATLAB/Simulink software is chosen as it can support complicate modelling and analysis.

100% 신재생에너지 자원 기반 에너지 공급을 위한 태양광, 풍력 및 바이오 발전의 통합 전략 및 경제성 평가 (Economic Benefits of Integration of Supplementary Biopower and Energy Storage Systems in a Solar-Wind Hybrid System)

  • 황해진;문준영;김지용
    • Korean Chemical Engineering Research
    • /
    • 제58권3호
    • /
    • pp.381-389
    • /
    • 2020
  • 본 연구에서는 다양한 신재생 에너지원 기반 전력 공급 시스템 구축하고, 각 시스템의 최적 전력 공급 비용을 비교 분석 하였다. 특히, 풍력 및 태양광 등 대표적인 신재생에너지 생산 기술과 더불어 대형 에너지 저장 시스템 및 바이오매스 기반 전력 생산 기술을 포함함으로써, 신재생에너지 자원의 간헐성 및 에너지 공급과 수요의 불균형의 한계를 극복하였다. 본 연구에서 제안한 6가지의 신재생 에너지원 기반 전력 공급 시스템을 실제 제주도 전력 공급 문제에 적용함으로써, 제주도 지역의 최적 에너지 시스템을 규명하였으며, 다양한 에너지 생산 기술의 조합의 효과를 분석하였다. 분석 결과, 태양광 및 풍력 기반 전력 공급 단가는 각각 0.18, 0.28 $/kWh로 개별 자원 기반의 에너지 생산 시스템의 기존 전력망을 통한 공급 단가에 비해 경쟁력이 낮았다. 또한 자원의 간헐성 및 공급과 수요의 불균형 등 단일자원 기반의 단점을 효과적으로 개선하기 위하여 3가지 신재생 자원 및 대형 에너지 저장 시스템을 포함한 하이브리드 공급 시스템의 경제적 효과를 분석하였다. 그 결과 기존 전통적 전력망 공급과 가격 경쟁력을 갖는 0.08 $/kWh 수준의 100% 신재생에너지 기반 전력 공급 시스템 구축이 가능함을 규명하였다.