• Title/Summary/Keyword: Hybrid protein

Search Result 466, Processing Time 0.029 seconds

Expression of a Functional Human Tumor Necrosis Factor-${\alpha}$ (hTNF-$\alpha$) in Yeast Saccharomyces cerevisiae

  • Park, Seung-Moon;Mo, Ae-Young;Jang, Yong-Suk;Lee, Jae-Hwa;Yang, Moon-Sik;Kim, Dae-Hyuk
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.292-296
    • /
    • 2004
  • The recombinant soluble human tumor necrosis factor-alpha (hTNF-$\alpha$) was expressed in a yeast Saccharomyces cerevisiae and its cytotoxicity was evaluated. A cDNA encoding hTNF-$\alpha$ was placed under the control of two different promoters: a glyceraldehyde-3-phosphate dehydrogenase (GPD) promoter and a yeast hybrid ADH2-GPD promoter, consisting of alcohol dehydrogenase II (ADH2) and the GPD promoter. A Northern blot analysis revealed that, although variation in the expression level of hTNF-$\alpha$ existed among transformants, the higher expression was obtained with the GPD promoter. Expressed hTNF-$\alpha$ protein (rhTNF-$\alpha$) was successfully secreted into the culture medium, producing 2.5 mg per liter of culture filtrate, with no changes in cell growth. The bioassay for observing the cytotoxicity to the murine L929 fibroblast cell line, with serial dilution of rhTNF-$\alpha$, indicated that the secreted rhTNF-$\alpha$ was bioactive and its dose-response was improved eight to ten times over that of the E. coli-derived rhTNF-$\alpha$.

Variability of Quality Related Characters in the Recombinant Inbred Lines from Milyang 23 and Gihobyeo (밀양23호와 기호벼 교잡 재조합자식계통(RILs)의 품질관련 특성 변이)

  • Kang, Hyeon-Jung;Kim, Young-Doo;Kim, Hyun-Soon;Lee, Young-Tae;Eun, Moo-Young
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.58-66
    • /
    • 2006
  • The rice quality related traits including physico-chemical traits were evaluated with one hundred sixty-four MG RILs derived from the cross between Milyang 23, Indica/Japonica hybrid type, and Gihobyeo, Japonica type. The variation distribution of all traits examined approximately fit normal distribution and transgressive segregants over parents were observed for all traits. The occurrence of such transgression could be associated with the interactions of complementary QTL alleles from two parents. However in this study, it could not be concluded that our results of segregation were due to either complementary gene effects or overdominance of a major gene. These factors should be verified by further studies. Correlations between traits were evaluated by regressing phenotypic values of one trait on those of another traits. There are highly significant correlation between grain thickness with grain width, white core and white belly. But between white belly and alkali digestion value showed highly negative significant correlation. Contents of protein showed highly negative correlation with amylose and Mg/K ratio but showed highly correlation with K and Fat contents. Hardness of cooked rice showed highly correlation with adhesiveness, elasticity, gumminess, chewiness.

Cloning and Initial Analysis of Porcine MPDU1 Gene

  • Yang, J.;Yu, M.;Liu, B.;Fan, B.;Zhu, M.;Xiong, T.;Li, Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.9
    • /
    • pp.1237-1241
    • /
    • 2005
  • Mannose-P-dolichol utilization defect 1 (MPDU1) gene is required for utilization of the mannose donor MPD in synthesis of both lipid-linked oligosaccharides (LLOs) and glycosylphosphatidylinositols (GPI) which are important for functions such as protein folding and membrane anchoring. The full length cDNA of the porcine MPDU1 was determined by in silico cloning and rapid amplification of cDNA ends (RACE). The deduced amino acid showed 91% identity to the corresponding human sequence with five predicted transmembrane regions. RT-PCR was performed to detect its expression pattern in five tissues and results showed that it is expressed ubiquitously among the tissues checked. A single nucleotide substitution resulting in the amino acid change (137 Tyr-137 His) was detected within exon 5. Allele frequencies in six pig breeds showed distinctive differences between those Chinese indigenous pigs breeds and European pigs. Using the pig/rodent somatic cell hybrid panel (SCHP), we mapped the porcine MPDU1 gene to SSC12, which is consistent with the comparative mapping result as conservative syntenic groups presented between human chromosome 17 and pig chromosome 12.

Sol-Gel Encapsulation as Matrix for Potentiometric Nitrite-Selective Membranes Doped with Chloro (5, 10, 15, 20-Tetraphenylporphyrinato) Cobalt (III)

  • Zhou, Hao;Meyerhoff, Mark E.;Bi, Kai-Shun;Park, Sung-Bae
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.335-341
    • /
    • 2009
  • Organic-inorganic hybrid sol-gel matrices were used as hosts for chloro (5, 10, 15, 20-tetraphenylporphyrinato) cobalt (III) (Co[TPP]Cl), a known ionophore for nitrite. The sol-gel precursor was prepared by the reaction of (3-isocyanopropyl) triethoxysilane with 1,4-butanediol. An appropriate amount of the anion-exchanger, tridodecylmethylammonium chloride (TDMAC) and the plasticizer, tributylphosphate (DBP) were used as membrane additives. On mixing with an acidic catalyst, the sol-state precursors slowly gelled, yielding a membrane in which the active components, Co[TPP]Cl and TDMAC, were encapsulated. The performances of the sol-gel membrane-based electrodes were compared to those of Co[TPP]Cl-based poly(vinyl chloride) (PVC) membrane electrodes. Membranes with a molar ratio of Co[TPP]Cl: TDMAC (1 : 0.1) showed reasonable response slopes toward nitrite. The response slopes were typically 53 mV/decade between $10^{-5.4}$ and $10^{-1.0}\;M$. Selectivities toward nitrite over hydrophilic and small anions such as chloride were somewhat inferior to those observed with PVC-based membranes, but selectivities over lipophilic anions were quite similar. Reduced asymmetry potentials due to protein adsorption were found to occur with the sol-gel matrix relative to PVC-based films when the sensors were employed as a detector in flow-through configuration.

Cloning and Characterization of a PI-like MADS-Box Gene in Phalaenopsis Orchid

  • Guo, Bin;Hexige, Saiyin;Zhang, Tian;Pittman, Jon K.;Chen, Donghong;Ming, Feng
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.845-852
    • /
    • 2007
  • The highly evolved flowers of orchids have colorful sepals and fused columns that offer an opportunity to discover new genes involved in floral development in monocotyledon species. In this investigation, we cloned and characterized the homologous PISTALLATA-like (PI-like) gene PhPI15 ($\underline{Ph}alaenopsis$ $\underline{PI}$ STILLATA # $\underline{15}$), from the Phalaenopsis hybrid cultivar. The protein sequence encoded by PhPI15 contains a typical PI-motif. Its sequence also formed a subclade with other monocot PI-type genes in phylogenetic analysis. Southern analysis showed that PhPI15 was present in the Phalaenopsis orchid genome as a single copy. Furthermore, it was expressed in all the whorls of the Phalaenopsis flower, while no expression was detected in vegetative organs. The flowers of transgenic tobacco plants ectopically expressing PhPI15 showed male-sterile phenotypes. Thus, as a Class-B MADS-box gene, PhPI15 specifies floral organ identity in orchids.

Targeting of Nuclear Encoded Proteins to Chloroplasts: a New Insight into the Mechanism

  • Lee, Yong-Jik;Kim, Yong-Woo;Pih, Kyeong-Tae;Hwang, Inhwan
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.5
    • /
    • pp.407-409
    • /
    • 2000
  • Outer envelope membrane proteins of chloroplasts encoded by the nuclear genome are transported without the N-terminal transit peptide. Here, we investigated the targeting mechanism of AtOEP7, an Arabidopsis homolog of small outer envelope membrane proteins in vivo. AtOEP7 was expressed transiently in protoplasts or stably in transgenic plants as fusion proteins with GFP. In both cases AtOEP7:GFP was targeted to the outer envelope membrane when assayed under a fluorescent microscope or by Western blot analysis. Except the transmembrane domain, deletions of the N- or C-terminal regions of AtOEP7 did not affect targeting although a region closed to the C-terminal side of the transmembrane domain affected the targeting efficiency. Targeting experiments with various hybrid transmembrane mutants revealed that the amino acid sequence of the transmembrane domain determines the targeting specificity The targeting mechanism was further studied using a fusion protein, AtOEP7:NLS:GFP, that had a nuclear localization signal. AtOEP7:NLS:GFP was efficiently targeted to the chloroplast envelope despite the presence of the nuclear localization signal. Taken together, these results suggest that the transmembrane domain of AtOEP7 functions as the sole determinant of targeting specificity and that AtOEP7 may be associated with a cytosolic component during translocation to the chloroplast envelope membrane.

  • PDF

Expression Characterization, Polymorphism and Chromosomal Location of the Porcine Calsarcin-3 Gene

  • Wang, Heng;Yang, Shulin;Tang, Zhonglin;Mu, Yulian;Cui, Wentao;Li, Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1349-1353
    • /
    • 2007
  • Calcineurin is a calmodulin dependent protein that functions as a regulator of muscle cell growth and function. Agents capable of interacting with calcineurin could have important applications in muscle disease treatment as well as in the improvement of livestock production. Calsarcins comprise a family of muscle-specific calcineurin binding proteins which play an important role in modulating the function of calcineurin in muscle cells. Recently, we described the first two members of the calsarcin family (calsarcin-1 and calsarcin-2) in the pig. Here, we characterized the third member of the calsarcin family, calsarcin-3, which is also expressed specifically in skeletal muscle. However, unlike calsarcin-1 and calsarcin-2, the calsarcin-3 mRNA expression in skeletal muscle kept rising throughout the prenatal and postnatal development periods. In addition, radiation hybrid mapping indicated that porcine calsarcin-3 mapped to the distal end of the q arm of pig chromosome 2 (SSC2). A C/T single nucleotide polymorphism site in exon 5 was genotyped using the denaturing high performance liquid chromatography (DHPLC) method and the allele frequencies at this locus were significantly different among breeds.

Effects of Bacterial Inoculants and Cutting Height on Fermentation Quality of Barley Silage

  • Lee, Hyuk Jun;Kim, Dong Hyeon;Amanullah, Sadar M.;Kim, Sam Churl;Song, Young Min;Kim, Hoi Yun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.163-168
    • /
    • 2014
  • This study was conducted to investigate the effects of bacterial inoculation (Lactobacillus plantarum) and cutting height on the chemical composition, fermentation characteristics and in vitro dry matter digestibility (IVDMD) in whole crop barley silage. Barley forage (Youngyang hybrid) was harvested at about 27% of dry matter (DM) level at two different cutting height (5 vs. 15 cm). And it was chopped to 5 cm length and treated with or without L. plantarum. Four replicates of each treatment were ensiled into 10 L mini silo (3 kg) for 100 days. After 100 days, bacterial inoculation decreased (p=0.001) DM content, while increased cutting height increased (p=0.002) DM in uninoculated silage. Crude protein (CP) concentration was decreased by increasing height in uninoculated silage (8.84 vs. 8.16) but increased in inoculated silage (8.19 vs. 8.99). Both neutral detergent fiber (NDF) (p<0.011) and acid detergent fiber (ADF) (p<0.004) were decreased by increasing cutting height of forage at harvest. The IVDMD and ammonia-N was increased (p=0.001) by increasing cutting height and inoculation, respectively. Lactic acid bacteria (LAB) was increased (p=0.002) in inoculated silage, but yeast count was decreased (p=0.026) in uninoculated silages. It is concluded that increased cutting height of forage at harvest could be useful to make a fibrous portion with increase of dry matter digestibility of silages.

Genetic Screening for Plant Cell Death Suppressors and Their Functional Analysis in Plants

  • Yun, Dae-Jin
    • Proceedings of the Korean Society of Life Science Conference
    • /
    • 2005.04a
    • /
    • pp.23-36
    • /
    • 2005
  • Bax, a mammalian pro-apoptotic member of the Bcl-2 family, induces cell death when expressed In yeast. To investigate whether .Bax expression can induce cell death in plant, we produced transgenic Arabidopsis plants that contained murine Bax cDNA under control of a glucocorticoid-inducible promoter. Transgenic plants treated with dexamethasone, a strong synthetic glucocorticoid, induced Bax accumulation and cell death, suggesting that some elements of cell death mechanism by Bax may be conserved among various orgarusms. Therefore, we developed novel yeast genetic system, and cloned several Plant Bax Inhibitors (PBIs). Here, we report the function of two PBIs In detail. PBIl is ascorbate peroxidase (sAPX). Fluorescence method of dihydrorhodamine123 oxidation revealed that expression of Bax in yeast cells generated reactive oxygen species (ROS), and which was greatly reduced by co-expression with sAPX. These results suggest that sAPX inhibits the generation of ROS by Bax, which in turn suppresses Bax-induced cell death in yeast. PBI2 encodes nucleoside diphosphate kinase (NDPK). ROS stress strongly induces the expression of the NDPK2 gene in Arabidopsis thaliana (AtNDPK2). Transgenic plants overexpressing AtNDPK2 have lower lovels of ROS than wildtype plants. Mutants lacking AtNDPK2 had higher levels of ROS than wildtype. H$_{2O2}$ treatment induced the phosphorylation of two endogenous proteins whose molecular weights suggested they are AtMPK3 and AtMPK6. In the absence of H2O2 treatment, phosphorylation of these proteins was slightly elevated in plants overexpressing AtNDPK2 but markedly decreased In the AtNDPK2 deletion mutant. Yeast two-hybrid and in vitro protein pull-down assays revealed that AtNDPK2 specifically interacts with AtMPK3 and AtMPK6. Furthermore, AtNDPK2 also enhances the MBP phosphorylation activity of AtMPK3 i'n vitro. Finally, constitutive overexpression of AtNDPK2 in Arabidopsis plants conferred an enhanced tolerance to multiple environmental stresses that elicit ROS accumulation In situ. Thus, AtNDPK2 appears to play a novel regulatory role in H2O2-mediated MAPK signaling in plants.

  • PDF

Effects of Mixed Application of Chemical Fertilizer and Liquid Swine Manure on Agronomic Characteristics, Yield and Feed Value of Corn Hybrid for Silage in Paddy Field Cultivation

  • Lee, Sang Moo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.4
    • /
    • pp.369-378
    • /
    • 2012
  • This study was performed out to investigate the influence of the mixed application of chemical fertilizer (CF) and liquid swine manure (LSM) on the growth characteristics, dry matter yield, amino acids, minerals, and free sugars in cultivating silage corn on paddy soils. The field experiment was designed in a randomized block design of 3 repetitions with CF 100% treatment (C), CF 70% + LSM 30% treatment (T1), CF 50% + LSM 50% treatment (T2), CF 30% + LSM 70% treatment (T3), and LSM 100% treatment (T4). At this time, the application of LSM was based solely on the nitrogen. Ear length, ear circle, stem diameter, and stem hardness of the silage corn did not show significant differences between treatments. Fresh yield, dry matter yield and TDN yield were highest in T3, whereas the lowest in C treatment (p<0.05). Crude protein, crude fat, and crude ash content were significantly higher in T1, C, and T4 treatment, respectively (p<0.05). However, NDF, ADF and crude fiber content did not show significant difference between treatments. The total mineral content decreased significantly (p<0.05) as the LSM application rate increased. Total composition amino acid content was higher in the order of T1 > T2 > C > T4 > T3 treatment (p<0.05). Free sugar content was higher in the order of T1 > T3 > T4 > T2 > C treatment (p<0.05). Based on the above results, suggests that the mixed application of chemical fertilizer 30~50% and LSM 50~70% (T2 and T3) is the most effective, considering the yield performance and the content of sugar degree and free sugar affecting silage.