• Title/Summary/Keyword: Hybrid polymer

Search Result 626, Processing Time 0.033 seconds

Electroactive Conjugated Polymer / Magnetic Functional Reduced Graphene Oxide for Highly Capacitive Pseudocapacitors: Electrosynthesis, Physioelectrochemical and DFT Investigation

  • Ehsani, A.;Safari, R.;Yazdanpanah, H.;Kowsari, E.;Shiri, H. Mohammad
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.301-307
    • /
    • 2018
  • The current study fabricated magnetic functional reduced graphene oxide (MFRGO) by relying on ${FeCl_4}^-$ magnetic anion confined to cationic 1-methyl imidazolium. Furthermore, for improving the electrochemical performance of conductive polymer, hybrid poly ortho aminophenol (POAP)/ MFRGO films have then been fabricated by POAP electropolymerization in the presence of MFRGO nanorods as active electrodes for electrochemical supercapacitors. Surface and electrochemical analyses have been used for characterization of MFRGO and POAP/ MFRGO composite films. Different electrochemical methods including galvanostatic charge discharge experiments, cyclic voltammetry and electrochemical impedance spectroscopy have been applied to study the system performance. Prepared composite film exhibited a significantly high specific capacity, high rate capability and excellent cycling stability (capacitance retention of ~91% even after 1000 cycles). These results suggest that electrosynthesized composite films are a promising electrode material for energy storage applications in high-performance pseudocapacitors.

Development of BMS applying to LPB Pack in Bimodal Tram (바이모달트램용 LPB팩에 적용될 Battery Management System 개발)

  • Lee, Kang-Won;Chang, Se-Ky;Nam, Jong-Ha;Kang, Duk-Ha;Bae, Jong-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.477-477
    • /
    • 2009
  • Bimodal Tram developed by KRRI is driven by a series Hybrid propulsion system which has both the CNG engine, generator and LPB(Lithium Polymer Battery) pack. It has three driving modes; Hybrid mode, Engine mode and Battery mode. Even in case of Battery mode, LPB pack to get enough power to drive the vehicle only by itself onsists of 168 LPB cells(80Ah per lcell), 650V. It is important thing to manage LPB pack in a right way, which will extend the lifetime of LPB cells and operate in the hybrid mode effectively. This paper has shown the development of battery management system(12 BMS, 1 BMS per 14cells) to manage LPB pack which is connected with CAN(Controller Area Network) each other and measure the voltage, current, temperature and also control the cooling fan inside of LPB pack. Using the measured data, BMS can show the SOC(State of Charge), SOH(State of Health) and other status of LPB pack including of the cell balancing.

  • PDF

Development and Application of LPB Management System for Bimodal Tram (바이모달트램용 LPB Management System 개발 및 적용)

  • Lee, Kang-Won;Mok, Jai-Kyun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.4
    • /
    • pp.231-235
    • /
    • 2015
  • Bimodal Tram developed by KRRI is driven by a series Hybrid propulsion system which has both the CNG engine, generator and LPB(Lithium Polymer Battery) pack. It has three driving modes; Hybrid mode, Engine mode and Battery mode. Even in case of Battery mode, LPB pack to get enough power to drive the vehicle only by itself onsists of 168 LPB cells(80Ah per lcell), 650V. It is important thing to manage LPB pack in a right way, which will extend the lifetime of LPB cells and operate in the hybrid mode effectively. This paper has shown the development of battery management system(12 BMS, 1 BMS per 14cells) to manage LPB pack which is connected with CAN(Controller Area Network) each other and measure the voltage, current, temperature and also control the cooling fan inside of LPB pack. Using the measured data, BMS can show the SOC(State of Charge), SOH(State of Health) and other status of LPB pack including of the cell balancing.

Flexural Failure Design Criteria for Retrofitted RC Slabs using FRP-UHPC Hybrid System (FRP-UHPC 복합 보강기법으로 보강된 RC 슬라브의 휨 파괴를 위한 설계 조건)

  • Kim, Jung Joong;Noh, Hyuk-Chun;Reda Taha, Mahmoud M.
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.11-18
    • /
    • 2012
  • This study proposes flexural failure design criteria of continuous slabs enhanced by a hybrid system of fiber reinforced polymer (FRP) and ultra high performance concrete (UHPC). The proposed hybrid retrofit system is designed to be placed at the top surface of the slabs for flexural strengthening of the sections in both positive and negative moment zones. The enhancing mechanisms of the proposed system for both positive and negative moment regions are presented. The neutral axis of the enhanced sections in positive moment zone at flexural failure is enforced to be in UHPC overlay for preventing the compression in FRP. From this condition, a relationship between design parameters of FRP and UHPC is established. Although the capacity of the proposed retrofit system to enhance flexural strength and ductility is confirmed through experiments of one-way RC slabs having two continuous spans, the retrofitted slabs failed in shear. To prevent this shear failure, a design criteria of flexural failure is proposed.

High Efficiency AMOLED Using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.163-166
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages, such as high-resolution patterning with over-all position accuracy of the imaged stripes within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished using real-time error correction and a high -resolution stage control system that includes laser interferometers. Here the new concept of mixed hybrid system which complement the advantages of small molecular and polymeric materials for use as an OLED; our system can realize the easy processing of polymers and high luminance efficiency of recently developed small molecules. LITI process enables to pattern the stripes with excellent thickness uniformity and multi-stacking of various functional layers without using any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure of small molecular/polymeric species.

  • PDF

Hybrid & Fuel Cell Connection Power System for Ocean Structure (하이브리드 및 연료전지 연계형 해양구조물용 전력체계)

  • Park, Do-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.35 no.8
    • /
    • pp.637-641
    • /
    • 2011
  • Ocean structure's power system is difficult to construct a stand-alone power system. Therefore, to manage effectively power system of ocean structure, it's important to construct power system which is connected fuel-cell with hybrid power system. This paper designs power system of fuel-cell for the sea based on hydrogen generation mechanism, calculation of using electric power, etc. Designed power system is analysed & simulated using LabVIEW program. And, this paper suggests design method of power system for ocean structure based on analysed & simulated results.

Nonvolatile Flexible Bistable Organic Memory (BOM) Device with Au nanoparticles (NPs) embedded in a Conducting poly N-vinylcarbazole (PVK) Colloids Hybrid

  • Son, Dong-Ick;Kwon, Byoung-Wook;Park, Dong-Hee;Yang, Jeong-Do;Choi, Won-Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.440-440
    • /
    • 2011
  • We report on the non-volatile memory characteristics of a bistable organic memory (BOM) device with Au nanoparticles (NPs) embedded in a conducting poly N-vinylcarbazole (PVK) colloids hybrid layer deposited on flexible polyethylene terephthalate (PET) substrates. Transmission electron microscopy (TEM) images show the Au nanoparticles distributed isotropically around the surface of a PVK colloid. The average induced charge on Au nanoparticles, estimated using the C-V hysteresis curve, was large, as much as 5 holes/NP at a sweeping voltage of ${\pm}3$ V. The maximum ON/OFF ratio of the current bistability in the BOM devices was as large as $1{\times}105$. The cycling endurance tests of the ON/OFF switching exhibited a high endurance of above $1.5{\times}105$ cycles and a high ON/OFF ratio of ~105 could be achieved consistently even after quite a long retention time of more than $1{\times}106$ s.

  • PDF

Insulation Breakdown Characteristics of Inverter Surge Resistant Enameled Wire Prepared with Organic/Inorganic Hybrid Nanocomposite

  • Park, Jae-Jun;Shin, Seong-Sik;Lee, Jae-Young;Han, Se-Won;Kang, Dong-Pil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.190-193
    • /
    • 2015
  • Insulation breakdown characteristics of an inverter surge resistant enameled wire were investigated in a twisted pair prepared with organic/inorganic hybrid nanocomposite. Organic polymer was polyesterimide-polyamideimide (EI/AI) and inorganic material was a nano-sized silica. The enamel thickness was 50 μm and the diameters of enameled copper wires were 0.75, 1.024, and 1.09 mm, respectively. There were many air gaps in a twisted pair. Therefore, when the voltage was applied to the twisted pair, enamel erosion took place in the air gap area because of partial discharge according to Paschen’s law. The insulation lifetime of the hybrid wire (HW) was 41,750 sec, which was 515.4 times more than the 81 sec of EI/AIW. In addition, the shape parameter of HW was 2.58, which was 3.4 times higher than 0.75 of EI/AIW.

Development of jute rope hybrid composite plate using carbon fibre

  • Nouri, Karim;Alam, Md. Ashraful;Mohammadhassani, Mohammad;Jumaat, Mohd Zamin Bin;Abna, Amir Hosein
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.1095-1113
    • /
    • 2015
  • Jute rope is one of the most popular materials used for composites in various industries and in civil engineering. This experimental study investigated two types of jute rope with different diameters for jute rope composite plates to determine the best combination of jute rope and carbon fiber in terms of ratio and physical and mechanical properties. Eight combinations of carbon fiber and jute rope with different percentages of carbon fiber were analyzed. Tensile tests for the jute rope composite plate and hybrid jute rope composite were conducted, and the mechanical and physical properties of the specimens were compared. Thereafter, the ideal combinations of jute rope with an optimum percentage of carbon fiber were identified and recommended. These particular combinations had tensile strengths that were 2.23 times and 1.76 times higher than other varieties in each type.

Visualization device of solid fuel combustion in hybrid rocket (하이브리드 로켓에서의 고체 연료 연소 가시화 장치)

  • Moon, Keun-Hwan;Cho, Jung-Tae;Kim, Soo-Jong;Lee, Jung-Pyo;Kim, Hak-Chul;Oh, Ji-Sung;Moon, Hee-Jang;Sung, Hong-Gye;Kim, Jin-Kon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.206-209
    • /
    • 2010
  • The visualization device for hybrid rocket is fabricated to investigate the combustion phenomena. Visualization device were composed with ignition system, oxidizer supply system, control system and data acquisition system, combustion visualization system. GOX as oxidizer and HDPE, Paraffin-LDPE Blending, Paraffin sd were used. As results, combustion phenomena and fuel droplet entrainment were observed.

  • PDF