• Title/Summary/Keyword: Hybrid platform

Search Result 210, Processing Time 0.026 seconds

OneNet Cloud Computing Based Real-time Home Security System (OneNet 클라우드 컴퓨팅 기반 실시간 홈 보안 시스템)

  • Kim, Kang-Chul;Zhao, Yongjiang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.101-108
    • /
    • 2021
  • This paper builds a real-time home security system based on the OneNet cloud platform to control the status of the house through a smartphone. The system consists of a local part and a cloud part. The local part has I/O devices, router and Raspberry Pi (RPi) that collects and monitors sensor data and sends the data to the cloud, and the Flask web server is implemented on a Rasberry Pi. When a user is at home, the user can access the Flask web server to obtain the data directly. The cloud part is OneNet in China Mobile, which provides remote access service. The hybrid App is designed to provide the interaction between users and the home security system in the smartphone, and the EDP and RTSP protocol is implemented to transmit data and video stream. Experimental results show that users can receive sensor data and warning text message through the smartphone and monitor, and control home status through OneNet cloud.

Implementation of a Sensor Network in a Welding Workplace Based on IoT for Smart Shipyards (스마트 조선소를 위한 사물인터넷 기반 용접 작업장 센서네트워크 구축)

  • Kim, Hyun Sik;Lee, Gi Seung;Kang, Seog Geun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.3
    • /
    • pp.433-439
    • /
    • 2021
  • In this paper, we propose a method to implement an IoT-based sensor network for each workplace of a shipyard. Here, at the most common welding workplace in shipyards, the shipbuilding blocks are used as a communication medium to transmit information such as the worker's location, welding progress, and working hour to a server using LoRa and powerline communication. To achieve the data communication, inductive couplers and hybrid modems have been manufactured and installed on wire feeders and pin jigs to establish a sensor network. As a result of field test, the proposed system shows a success rate of data transmission and a rate of successful recognition of worker's location of about 98% or more. In addition, the process management system platform can record and display the work process data generated at the field in real time. The proposed system can be a starting point for enhancing the competitiveness of Korean shipbuilding industry through the establishment of a smart shipyard.

Research Trends of Technology Holding Companies and Suggestions for improving Corporate Performance : Focusing on the introduction of PMO (기술지주회사 연구동향과 기업성과 향상을 위한 제언 : Project Management Office(PMO) 도입을 중심으로)

  • Lee, Kangoh;Lee, Chanho
    • Journal of East Asia Management
    • /
    • v.4 no.1
    • /
    • pp.53-77
    • /
    • 2023
  • Modern company faces an uncertain future and a competitive environment and are seeking new technologies and creative products to ensure the corporate growth and survival in the market through continuous innovation. "University Industry Cooperation(UIC)" is a point of contact for overcoming the crisis faced by companies and universities in this era and a cooperation platform for mutual prosperity. As a subsidiary of a university, "Technology Holding Company(THC)" is attracting attention as a new window for UIC in Korea. The role of THC is to establish and foster the business opportunities of their subsidiaries and to return investment profits to the university ecosystem again. But recently, the life cycle of technology is getting shorter, and the development cost is steadily increasing. In particular, with the increase of hybrid projects based on convergence and combination, the risk of conducting research(R&D) and new product development(NPD) projects is gradually increasing. A PMO refers to a project management organization that can contribute to improving the success rate of projects with increasing uncertainty by supporting project visibility and appropriate decision-making. The purpose of this study is to raise a research question on whether THC's corporate performance can be improved when "Project Management System(PMO Service)" is introduced into the subsidiary incubation system of THC. This study proposes several research methods to identify the relationship between the introduction of PMO and the corporate performance of THC.

Modified analytical AI evolution of composite structures with algorithmic optimization of performance thresholds

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.53 no.1
    • /
    • pp.103-114
    • /
    • 2024
  • This study proposes a new hybrid approach that utilizes post-earthquake survey data and numerical analysis results from an evolving finite element routing model to capture vulnerability processes. In order to achieve cost-effective evaluation and optimization, this study introduced an online data evolution data platform. The proposed method consists of four stages: 1) development of diagnostic sensitivity curve; 2) determination of probability distribution parameters of throughput threshold through optimization; 3) update of distribution parameters using smart evolution method; 4) derivation of updated diffusion parameters. Produce a blending curve. The analytical curves were initially obtained based on a finite element model used to represent a similar RC building with an estimated (previous) capacity height in the damaged area. The previous data are updated based on the estimated empirical failure probabilities from the post-earthquake survey data, and the mixed sensitivity curve is constructed using the update (subsequent) that best describes the empirical failure probabilities. The results show that the earthquake rupture estimate is close to the empirical rupture probability and corresponds very accurately to the real engineering online practical analysis. The objectives of this paper are to obtain adequate, safe and affordable housing and basic services, promote inclusive and sustainable urbanization and participation, implement sustainable and disaster-resilient buildings, sustainable human settlement planning and management. Therefore, with the continuous development of artificial intelligence and management strategy, this goal is expected to be achieved in the near future.

An Analysis on the Educational Needs for the Smart Farm: Focusing on SMEs in Jeon-nam Area (중소·중견기업의 스마트팜 교육 수요 분석: 전남지역을 중심으로)

  • Hwang, Doo-hee;Park, Geum-Ju
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.649-655
    • /
    • 2020
  • This study determined effective educational strategies by investigating and analyzing the related educational demands for SMEs (small and medium-sized enterprises) in the 4th Industrial Revolution based area of smart farms. In order to derive the approprate educational strategies, Importance-Performance Analysis (IPA) and Borich's Needs Assessment Model were conducted based on the smart farm technological field. As a result, the education demand survey showed high demand for production systems and intelligent farm machinery. In detail, Borich's analysis showed the need for pest prevention and diagnosis technology (8.03), network and analysis SW linkage technology (7.83), and intelligent farm worker-agricultural power system-electric energy hybrid technology (7.43). In contrast, smart plant factories (4.09), lighting technology for growth control (4.46) and structure construction technology (4.62) showed low demands. Based on this, the IPA portfolio shows that the network and analysis SW linkage technology and the CAN-based complex center are urgently needed. However, the technology that has already been developed, such as smart factory platform development, growth control lighting technology and structure construction technology, was oversized. Based on these results, it is possible to strategically suggest the customized training programs for industrial sectors of SMEs that reflect the needs for efficiently operating smart farms. This study also provides effective ways to operate the relevant training programs.

Three-Dimensional Positional Accuracy Analysis of UAV Imagery Using Ground Control Points Acquired from Multisource Geospatial Data (다종 공간정보로부터 취득한 지상기준점을 활용한 UAV 영상의 3차원 위치 정확도 비교 분석)

  • Park, Soyeon;Choi, Yoonjo;Bae, Junsu;Hong, Seunghwan;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1013-1025
    • /
    • 2020
  • Unmanned Aerial Vehicle (UAV) platform is being widely used in disaster monitoring and smart city, having the advantage of being able to quickly acquire images in small areas at a low cost. Ground Control Points (GCPs) for positioning UAV images are essential to acquire cm-level accuracy when producing UAV-based orthoimages and Digital Surface Model (DSM). However, the on-site acquisition of GCPs takes considerable manpower and time. This research aims to provide an efficient and accurate way to replace the on-site GNSS surveying with three different sources of geospatial data. The three geospatial data used in this study is as follows; 1) 25 cm aerial orthoimages, and Digital Elevation Model (DEM) based on 1:1000 digital topographic map, 2) point cloud data acquired by Mobile Mapping System (MMS), and 3) hybrid point cloud data created by merging MMS data with UAV data. For each dataset a three-dimensional positional accuracy analysis of UAV-based orthoimage and DSM was performed by comparing differences in three-dimensional coordinates of independent check point obtained with those of the RTK-GNSS survey. The result shows the third case, in which MMS data and UAV data combined, to be the most accurate, showing an RMSE accuracy of 8.9 cm in horizontal and 24.5 cm in vertical, respectively. In addition, it has been shown that the distribution of geospatial GCPs has more sensitive on the vertical accuracy than on horizontal accuracy.

Development of the video-based smart utterance deep analyser (SUDA) application (동영상 기반 자동 발화 심층 분석(SUDA) 어플리케이션 개발)

  • Lee, Soo-Bok;Kwak, Hyo-Jung;Yun, Jae-Min;Shin, Dong-Chun;Sim, Hyun-Sub
    • Phonetics and Speech Sciences
    • /
    • v.12 no.2
    • /
    • pp.63-72
    • /
    • 2020
  • This study aims to develop a video-based smart utterance deep analyser (SUDA) application that analyzes semiautomatically the utterances that child and mother produce during interactions over time. SUDA runs on the platform of Android, iPhones, and tablet PCs, and allows video recording and uploading to server. In this device, user modes are divided into three modes: expert mode, general mode and manager mode. In the expert mode which is useful for speech and language evaluation, the subject's utterances are analyzed semi-automatically by measuring speech and language factors such as disfluency, morpheme, syllable, word, articulation rate and response time, etc. In the general mode, the outcome of utterance analysis is provided in a graph form, and the manger mode is accessed only to the administrator controlling the entire system, such as utterance analysis and video deletion. SUDA helps to reduce clinicians' and researchers' work burden by saving time for utterance analysis. It also helps parents to receive detailed information about speech and language development of their child easily. Further, this device will contribute to building a big longitudinal data enough to explore predictors of stuttering recovery and persistence.

A Study on the Improvement of Injection Molding Process Using CAE and Decision-tree (CAE와 Decision-tree를 이용한 사출성형 공정개선에 관한 연구)

  • Hwang, Soonhwan;Han, Seong-Ryeol;Lee, Hoojin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.580-586
    • /
    • 2021
  • The CAT methodology is a numerical analysis technique using CAE. Recently, a methodology of applying artificial intelligence techniques to a simulation has been studied. A previous study compared the deformation results according to the injection molding process using a machine learning technique. Although MLP has excellent prediction performance, it lacks an explanation of the decision process and is like a black box. In this study, data was generated using Autodesk Moldflow 2018, an injection molding analysis software. Several Machine Learning Algorithms models were developed using RapidMiner version 9.5, a machine learning platform software, and the root mean square error was compared. The decision-tree showed better prediction performance than other machine learning techniques with the RMSE values. The classification criterion can be increased according to the Maximal Depth that determines the size of the Decision-tree, but the complexity also increases. The simulation showed that by selecting an intermediate value that satisfies the constraint based on the changed position, there was 7.7% improvement compared to the previous simulation.

The Effect of Telemedicine Expansion on the Structural Change and the Competition Increase in the Health Care Industry and its Policy Implication- Focusing on the case of Amazon's foray on the health care industry (원격의료 확대가 의료산업 구조변화 및 경쟁 확대에 미치는 영향과 정책적 시사점 - 미국 아마존의 헬스케어 분야 진출 사례를 중심으로)

  • Lee, Jaehee
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.405-413
    • /
    • 2022
  • Since the COVID-19 outbreak, the active utilization of new health care service utilizing the ICT technology and data science such as telemedicine, smart hospital, AI dignosis has been increasingly found. In this study we examined the business model of Amazon healthcare which leads disruptive innovation in U.S. health care industry with the introduction of hybrid model of telemedicin, in-person care and customer-centric online drug delivery, home-use diagnostic kit, characterized by the integrated model combining medical care, drug delivery and the use of diagnostic kit. We showed using the multiproduct competition model that the synergy effect between the Amazon's original business areas and the healthcare business area causes the active market penetration and the increase in the customer value from utilization of the Amazon care. Using Hotelling's spatial competition model, we also showed that the competition in the health care market can be greater when consumer's choice of health care providers are available in telemedicine platform. In the long, run the issue of competition being weakened due to the exit of less competent healthcare providers may arise, to which the policymakers in the charge of fair competition in health care industry should pay attention.

Incorporating Social Relationship discovered from User's Behavior into Collaborative Filtering (사용자 행동 기반의 사회적 관계를 결합한 사용자 협업적 여과 방법)

  • Thay, Setha;Ha, Inay;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.1-20
    • /
    • 2013
  • Nowadays, social network is a huge communication platform for providing people to connect with one another and to bring users together to share common interests, experiences, and their daily activities. Users spend hours per day in maintaining personal information and interacting with other people via posting, commenting, messaging, games, social events, and applications. Due to the growth of user's distributed information in social network, there is a great potential to utilize the social data to enhance the quality of recommender system. There are some researches focusing on social network analysis that investigate how social network can be used in recommendation domain. Among these researches, we are interested in taking advantages of the interaction between a user and others in social network that can be determined and known as social relationship. Furthermore, mostly user's decisions before purchasing some products depend on suggestion of people who have either the same preferences or closer relationship. For this reason, we believe that user's relationship in social network can provide an effective way to increase the quality in prediction user's interests of recommender system. Therefore, social relationship between users encountered from social network is a common factor to improve the way of predicting user's preferences in the conventional approach. Recommender system is dramatically increasing in popularity and currently being used by many e-commerce sites such as Amazon.com, Last.fm, eBay.com, etc. Collaborative filtering (CF) method is one of the essential and powerful techniques in recommender system for suggesting the appropriate items to user by learning user's preferences. CF method focuses on user data and generates automatic prediction about user's interests by gathering information from users who share similar background and preferences. Specifically, the intension of CF method is to find users who have similar preferences and to suggest target user items that were mostly preferred by those nearest neighbor users. There are two basic units that need to be considered by CF method, the user and the item. Each user needs to provide his rating value on items i.e. movies, products, books, etc to indicate their interests on those items. In addition, CF uses the user-rating matrix to find a group of users who have similar rating with target user. Then, it predicts unknown rating value for items that target user has not rated. Currently, CF has been successfully implemented in both information filtering and e-commerce applications. However, it remains some important challenges such as cold start, data sparsity, and scalability reflected on quality and accuracy of prediction. In order to overcome these challenges, many researchers have proposed various kinds of CF method such as hybrid CF, trust-based CF, social network-based CF, etc. In the purpose of improving the recommendation performance and prediction accuracy of standard CF, in this paper we propose a method which integrates traditional CF technique with social relationship between users discovered from user's behavior in social network i.e. Facebook. We identify user's relationship from behavior of user such as posts and comments interacted with friends in Facebook. We believe that social relationship implicitly inferred from user's behavior can be likely applied to compensate the limitation of conventional approach. Therefore, we extract posts and comments of each user by using Facebook Graph API and calculate feature score among each term to obtain feature vector for computing similarity of user. Then, we combine the result with similarity value computed using traditional CF technique. Finally, our system provides a list of recommended items according to neighbor users who have the biggest total similarity value to the target user. In order to verify and evaluate our proposed method we have performed an experiment on data collected from our Movies Rating System. Prediction accuracy evaluation is conducted to demonstrate how much our algorithm gives the correctness of recommendation to user in terms of MAE. Then, the evaluation of performance is made to show the effectiveness of our method in terms of precision, recall, and F1-measure. Evaluation on coverage is also included in our experiment to see the ability of generating recommendation. The experimental results show that our proposed method outperform and more accurate in suggesting items to users with better performance. The effectiveness of user's behavior in social network particularly shows the significant improvement by up to 6% on recommendation accuracy. Moreover, experiment of recommendation performance shows that incorporating social relationship observed from user's behavior into CF is beneficial and useful to generate recommendation with 7% improvement of performance compared with benchmark methods. Finally, we confirm that interaction between users in social network is able to enhance the accuracy and give better recommendation in conventional approach.