• Title/Summary/Keyword: Hybrid panel

Search Result 158, Processing Time 0.025 seconds

Experimental Investigation on the Blast Resistance of Fiber-Reinforced Cementitious Composite Panels Subjected to Contact Explosions

  • Nam, Jeongsoo;Kim, Hongseop;Kim, Gyuyong
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.1
    • /
    • pp.29-43
    • /
    • 2017
  • This study investigates the blast resistance of fiber-reinforced cementitious composite (FRCC) panels, with fiber volume fractions of 2%, subjected to contact explosions using an emulsion explosive. A number of FRCC panels with five different fiber mixtures (i.e., micro polyvinyl alcohol fiber, micro polyethylene fiber, macro hooked-end steel fiber, micro polyvinyl alcohol fiber with macro hooked-end steel fiber, and micro polyethylene fiber with macro hooked-end steel fiber) were fabricated and tested. In addition, the blast resistance of plain panels (i.e., non-fiber-reinforced high strength concrete, and non-fiber-reinforced cementitious composites) were examined for comparison with those of the FRCC panels. The resistance of the panels to spall failure improved with the addition of micro synthetic fibers and/or macro hooked-end steel fibers as compared to those of the plain panels. The fracture energy of the FRCC panels was significantly higher than that of the plain panels, which reduced the local damage experienced by the FRCCs. The cracks on the back side of the micro synthetic fiber-reinforced panel due to contact explosions were greatly controlled compared to the macro hooked-end steel fiber-reinforced panel. However, the blast resistance of the macro hooked-end steel fiber-reinforced panel was improved by hybrid with micro synthetic fibers.

Development of a New Hybrid Silicon Thin-Film Transistor Fabrication Process

  • Cho, Sung-Haeng;Choi, Yong-Mo;Kim, Hyung-Jun;Jeong, Yu-Gwang;Jeong, Chang-Oh;Kim, Shi-Yul
    • Journal of Information Display
    • /
    • v.10 no.1
    • /
    • pp.33-36
    • /
    • 2009
  • A new hybrid silicon thin-film transistor (TFT) fabrication process using the DPSS laser crystallization technique was developed in this study to realize low-temperature poly-Si (LTPS) and a-Si:H TFTs on the same substrate as a backplane of the active-matrix liquid crystal flat-panel display (AMLCD). LTPS TFTs were integrated into the peripheral area of the activematrix LCD panel for the gate driver circuit, and a-Si:H TFTs were used as a switching device of the pixel electrode in the active area. The technology was developed based on the current a-Si:H TFT fabrication process in the bottom-gate, back-channel etch-type configuration. The ion-doping and activation processes, which are required in the conventional LTPS technology, were thus not introduced, and the field effect mobility values of $4\sim5cm^2/V{\cdot}s$ and $0.5cm^2/V{\cdot}s$ for the LTPS and a-Si:H TFTs, respectively, were obtained. The application of this technology was demonstrated on the 14.1" WXGA+(1440$\times$900) AMLCD panel, and a smaller area, lower power consumption, higher reliability, and lower photosensitivity were realized in the gate driver circuit that was fabricated in this process compared with the a-Si:H TFT gate driver integration circuit

Analysis for Nonlinear Behavior of Concrete Panel Considering Steel Bar Buckling (철근 좌굴을 고려한 콘크리트 패널의 비선형 거동에 대한 해석)

  • Lee, Sang-Sup;Park, Keum-Sung;Bae, Kyu-Woong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.130-137
    • /
    • 2018
  • Many constitutive models for concrete have been developed to predict the nonlinear behavior of concrete members considerably. The constitutive model for reinforcing bar that include the tension stiffening effect due to the bond characteristics between steel bars and concrete is being studied but the bilinear model is generally used. It was found that the buckling of the longitudinal reinforcing bars is controlled the nonlinear behavior of hybrid precast concrete panel, which is being developed for core wall. In this study, the constitutive models that can consider the embedding and buckling effects of reinforcing bar are investigated and a new model combing these constitutive models is proposed. In order to verify the proposed model, the analysis results are compared with experimental results of the concrete wall and hybrid precast concrete panel. The analysis of embedding-effect-only modeling predicted that the deformation increases continually without the decrease in the load carrying capacity. However, the analysis results of proposed model showed good agreement with some experimental results, thus verifying the proposed computational model.

Calculation of Wave Resistance of a Hybrid Hydrofoil (복합지지형 고속선의 조파저항 계산)

  • Yoo, J.H.;Kim, Y.G.;Lew, J.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-8
    • /
    • 1996
  • A potential-based panel method has been developed for numerical computation of wave resistance on a hybrid hydrofoil. Hybrid hydrofoil is composed of a main body, two struts and two hydrofoils. The main body, which is assumed to be an axisymmetric body for the present analysis, is normally used to support displacement of a body with its buoyancy. Normal dipoles and the sources are distributed on the body(main body, struts, hydrofoils) and the sources are distributed on the free surface. Linearized free surface and the radiation conditions are satisfied using the fourth order finite difference operator and the semi-linear pressure Kutta condition is used for the numerical computation of the hydrofoils. Poisson type free surface condition has been used for the numerical computation and hyperboloidal panel method has been used for better numerical accuracy. To verify this numeric method, model tests are performed in circulation water channel. From the comparison of experimental results with numeric ones, the present method can be used as a useful tool for the design of high speed vessels.

  • PDF

Evaluation of Mechanical and Vibration Characteristics of Laminated Damping Aluminum Panel for Automobile Components (자동차 부품용 알루미늄 접합 제진 패널의 기계적 특성 및 진동 특성 평가)

  • Bae, Sung-Youl;Bae, Ki-Man;Kim, Yun-Hae
    • Composites Research
    • /
    • v.32 no.2
    • /
    • pp.113-119
    • /
    • 2019
  • The objective of this research is to study the mechanical and vibration characteristics of vibration damping aluminum panels for automotive parts. For this purpose, the test and simulation results of aluminum-resin hybrid materials and aluminum sheet materials were compared. Tensile strength and elastic modulus of the hybrid material were approximately 10% lower than aluminum sheet. Also, it was showed that the hybrid material have lower natural frequency than aluminum sheet, and it was confirmed that loss factor increases as the thickness of resin increases. Finally, it is confirmed that the test results and the analysis results are similar with each other and the performance prediction of the materials are possible by FEA.

A Study on the Structural Performance of Hybrid Studs Subjected to Compression and Torsion (압축과 비틂을 동시에 받는 복합스터드의 구조적 성능에 관한 연구)

  • Jung, Yun Jin;Kwon, Young Bong;Kwak, Myong Keun;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.543-551
    • /
    • 2006
  • Cold-formed steel studs that are being used as load-bearing members of wall panels for steel houses have a problem with their insulation due to the heat bridging of their web. Some additional thermal insulating materials should be used. To solve this problem, the new-concept hybrid stud, which consists of a galvanized steel sheet (t = 1.0 m - 12.0 m) and a GFRP panel (t = 4.0-6.0 mm), has recently been developed. An investigation on the structural behavior and the strength capacity of this new hybrid stud has been conducted so that it can be used in load-bearing wall panels of residential buildings. This paper describes the axial compression-torsion test results of the hybrid studs under both axial compression and torsion using ATTM. The main factors of the test were the stud length, the magnitude of the initial compressive force, and the loading method of the monotonic or cyclic loading. The torsion was applied increasingly while the initial compression was kept constant to the failure of the hybrid section. The advanced analysis results obtained form the finite element procedure that considered the material properties of the high-strength galvanized steel and the GFRP were compared with the test results for verification.

Treatment of Acid Mine Drainage using Eggshells and Microalgae (폐난각과 미세조류를 이용한 산성광산배수처리)

  • Choi, Hee-Jeong
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.6
    • /
    • pp.647-652
    • /
    • 2014
  • The aim of this study was to investigate the heavy metal removal and biomass productivity in the Acid Mine Drainage (AMD) using eggshell and microalgae. The experiment was operated 6 days in the eggshell and microalgae hybrid system, and using eggshell powder and microalgae as Chlorella vulgaris. The obtained result indicated that the biomass productivity of 2.82 g/L/d from 1.12 g/L initial concentration in 6 days was reached with light transmittance of 97% at a 305 mm depth in the optical panel photobioreactor (OPPBR). The total removal efficiency of Fe, Cu, Zn, Mn and Cd was found to be 98.92%, 99.91%, 98.78%, 88.99% and 98.00% in the AMD using eggshell and Chlorella vulgaris hybrid system, respectively. Additionally, there were significant relationships between biomass and concentration of each heavy metal ($R^2$ = 0.8771, 0.8643, 0.8669, 0.9134 and 0.6277 for Fe, Cu, Zn, Mn and Cd). These results indicated that the eggshell and microalgae hybrid system was highly effective for heavy metal removal when compared to the conventional biological process in the AMD. Therefore, the eggshell and microalgae hybrid system was effective for heavy metal removal and biomass productivity and can be applied to treat AMD in treatment plant.

Numerical analysis on tensile properties of composite hybrid bonded/bolted joints with flanging

  • Cheng, Xiaoquan;Zhang, Jie;Zhang, Jikui;Liu, Peng;Cheng, Yujia;Xu, Yahong
    • Steel and Composite Structures
    • /
    • v.26 no.3
    • /
    • pp.265-272
    • /
    • 2018
  • A detailed study was carried out on the tensile properties of the single-lap joint of a steel panel bolted/bonded to a composite laminate with a flanging. Finite element model (FEM) was established to predict the strength and to analyze the damage propagation of the hybrid joints by ABAQUS/Standard, which especially adopted cohesive elements to simulate the interface between the laminate and adhesive. The strength and failure mode predicted by FEM were in good agreement with the experimental results. In addition, three influence factors including adhesive thickness, bolt preload and bolt-hole clearance were studied. The results show that the three parameters have effect on the first drop load of the load-displacement curve, but the effect of bolt-hole clearance is the largest. The bolt-hole clearance should be avoided for hybrid joints.

Zinc Sulfide-selenium X-ray Detector for Digital Radiography

  • Park, Ji-Koon;Kang, Sang-Sik;Kim, Jae-Hyung;Mun, Chi-Woong;Nam, Sang-Hee
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.16-20
    • /
    • 2002
  • The high bias voltage associated with the thick layer (typically 500-1000 ㎛) of selenium required to have an acceptable x-ray absorption in radiography and fluoroscopy applications may have some practical inconvenience. A hybrid x-ray detector with zinc sulfide-amorphous selenium structure has been developed to improve the x-ray sensitivity of a a-Se based flat-panel digital imaging detector. Photoluminescence(PL) characteristic of a ZnS:Ag phosphor layer showed a light emission peak centered at about 450 nm, which matches the sensitivity spectrum of selenium. The dark current of the hybrid detector showed similar characteristics with that of a a-Se detector. The x-ray sensitivity of hybrid and a-Se x-ray detector was 345 pC/㎠/mR and 295 pC/㎠/mR at an applied voltage of 10 V/㎛, respectively. The purpose of this study was to evaluate the pertinence of a solution using a thin selenium layer, as a photosensitive converter, with a thick coating of silver doped zinc sulfide phosphor.

Time-domain hybrid method for simulating large amplitude motions of ships advancing in waves

  • Liu, Shukui;Papanikolaou, Apostolos D.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.72-79
    • /
    • 2011
  • Typical results obtained by a newly developed, nonlinear time domain hybrid method for simulating large amplitude motions of ships advancing with constant forward speed in waves are presented. The method is hybrid in the way of combining a time-domain transient Green function method and a Rankine source method. The present approach employs a simple double integration algorithm with respect to time to simulate the free-surface boundary condition. During the simulation, the diffraction and radiation forces are computed by pressure integration over the mean wetted surface, whereas the incident wave and hydrostatic restoring forces/moments are calculated on the instantaneously wetted surface of the hull. Typical numerical results of application of the method to the seakeeping performance of a standard containership, namely the ITTC S175, are herein presented. Comparisons have been made between the results from the present method, the frequency domain 3D panel method (NEWDRIFT) of NTUA-SDL and available experimental data and good agreement has been observed for all studied cases between the results of the present method and comparable other data.