• Title/Summary/Keyword: Hybrid optimization algorithm

Search Result 405, Processing Time 0.025 seconds

A Genetic Algorithm for Scheduling Sequence-Dependant Jobs on Parallel Identical Machines (병렬의 동일기계에서 처리되는 순서의존적인 작업들의 스케쥴링을 위한 유전알고리즘)

  • Lee, Moon-Kyu;Lee, Seung-Joo
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.3
    • /
    • pp.360-368
    • /
    • 1999
  • We consider the problem of scheduling n jobs with sequence-dependent processing times on a set of parallel-identical machines. The processing time of each job consists of a pure processing time and a sequence-dependent setup time. The objective is to maximize the total remaining machine available time which can be used for other tasks. For the problem, a hybrid genetic algorithm is proposed. The algorithm combines a genetic algorithm for global search and a heuristic for local optimization to improve the speed of evolution convergence. The genetic operators are developed such that parallel machines can be handled in an efficient and effective way. For local optimization, the adjacent pairwise interchange method is used. The proposed hybrid genetic algorithm is compared with two heuristics, the nearest setup time method and the maximum penalty method. Computational results for a series of randomly generated problems demonstrate that the proposed algorithm outperforms the two heuristics.

  • PDF

Optimal Allocation Method of Hybrid Active Power Filters in Active Distribution Networks Based on Differential Evolution Algorithm

  • Chen, Yougen;Chen, Weiwei;Yang, Renli;Li, Zhiyong
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1289-1302
    • /
    • 2019
  • In this paper, an optimal allocation method of a hybrid active power filter in an active distribution network is designed based on the differential evolution algorithm to resolve the harmonic generation problem when a distributed generation system is connected to the grid. A distributed generation system model in the calculation of power flow is established. An improved back/forward sweep algorithm and a decoupling algorithm are proposed for fundamental power flow and harmonic power flow. On this basis, a multi-objective optimization allocation model of the location and capacity of a hybrid filter in an active distribution network is built, and an optimal allocation scheme of the hybrid active power filter based on the differential evolution algorithm is proposed. To verify the effect of the harmonic suppression of the designed scheme, simulation analysis in an IEEE-33 nodes model and an experimental analysis on a test platform of a microgrid are adopted.

ACCELERATED HYBRID ALGORITHMS FOR NONEXPANSIVE MAPPINGS IN HILBERT SPACES

  • Baiya, Suparat;Ungchittrakool, Kasamsuk
    • Nonlinear Functional Analysis and Applications
    • /
    • v.27 no.3
    • /
    • pp.553-568
    • /
    • 2022
  • In this paper, we introduce and study two different iterative hybrid projection algorithms for solving a fixed point problem of nonexpansive mappings. The first algorithm is generated by the combination of the inertial method and the hybrid projection method. On the other hand, the second algorithm is constructed by the convex combination of three updated vectors and the hybrid projection method. The strong convergence of the two proposed algorithms are proved under very mild assumptions on the scalar control. For illustrating the advantages of these two newly invented algorithms, we created some numerical results to compare various numerical performances of our algorithms with the algorithm proposed by Dong and Lu [11].

An Optimal Reliability-Redundancy Allocation Problem by using Hybrid Parallel Genetic Algorithm (하이브리드 병렬 유전자 알고리즘을 이용한 최적 신뢰도-중복 할당 문제)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.147-155
    • /
    • 2010
  • Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.

A Hybrid-Heuristic for Reliability Optimization in Complex Systems (콤플렉스 시스템의 신뢰도 최적화를 위한 발견적 합성해법의 개발)

  • 김재환
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.5 no.2
    • /
    • pp.87-97
    • /
    • 1999
  • This study is concerned with developing a hybrid heuristic algorithm for solving the redundancy optimization problem which is very important in system safety, This study develops a HH(Hybrid Heuristic) method combined with two strategies to alleviate the risks of being trapped at a local optimum. One of them is to construct the populations of the initial solutions randomly. The other is the additional search with SA(Simulated Annealing) method in final step. Computational results indicate that HH performs consistently better than the KY method proposed in Kim[8]. Therefore, the proposed HH is believed to an attractive to other heuristic methods.

  • PDF

Particle Swarm Assisted Genetic Algorithm for the Optimal Design of Flexbeam Sections

  • Dhadwal, Manoj Kumar;Lim, Kyu Baek;Jung, Sung Nam;Kim, Tae Joo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.14 no.4
    • /
    • pp.341-349
    • /
    • 2013
  • This paper considers the optimum design of flexbeam cross-sections for a full-scale bearingless helicopter rotor, using an efficient hybrid optimization algorithm based on particle swarm optimization, and an improved genetic algorithm, with an effective constraint handling scheme for constrained nonlinear optimization. The basic operators of the genetic algorithm, of crossover and mutation, are revisited, and a new rank-based multi-parent crossover operator is utilized. The rank-based crossover operator simultaneously enhances both the local, and the global exploration. The benchmark results demonstrate remarkable improvements, in terms of efficiency and robustness, as compared to other state-of-the-art algorithms. The developed algorithm is adopted for two baseline flexbeam section designs, and optimum cross-section configurations are obtained with less function evaluations, and less computation time.

Rule-Based Fuzzy-Neural Networks Using the Identification Algorithm of the GA Hybrid Scheme

  • Park, Ho-Sung;Oh, Sung-Kwun
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.101-110
    • /
    • 2003
  • This paper introduces an identification method for nonlinear models in the form of rule-based Fuzzy-Neural Networks (FNN). In this study, the development of the rule-based fuzzy neural networks focuses on the technologies of Computational Intelligence (CI), namely fuzzy sets, neural networks, and genetic algorithms. The FNN modeling and identification environment realizes parameter identification through synergistic usage of clustering techniques, genetic optimization and a complex search method. We use a HCM (Hard C-Means) clustering algorithm to determine initial apexes of the membership functions of the information granules used in this fuzzy model. The parameters such as apexes of membership functions, learning rates, and momentum coefficients are then adjusted using the identification algorithm of a GA hybrid scheme. The proposed GA hybrid scheme effectively combines the GA with the improved com-plex method to guarantee both global optimization and local convergence. An aggregate objective function (performance index) with a weighting factor is introduced to achieve a sound balance between approximation and generalization of the model. According to the selection and adjustment of the weighting factor of this objective function, we reveal how to design a model having sound approximation and generalization abilities. The proposed model is experimented with using several time series data (gas furnace, sewage treatment process, and NOx emission process data from gas turbine power plants).

Identification of Fuzzy Inference System Based on Information Granulation

  • Huang, Wei;Ding, Lixin;Oh, Sung-Kwun;Jeong, Chang-Won;Joo, Su-Chong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.4
    • /
    • pp.575-594
    • /
    • 2010
  • In this study, we propose a space search algorithm (SSA) and then introduce a hybrid optimization of fuzzy inference systems based on SSA and information granulation (IG). In comparison with "conventional" evolutionary algorithms (such as PSO), SSA leads no.t only to better search performance to find global optimization but is also more computationally effective when dealing with the optimization of the fuzzy models. In the hybrid optimization of fuzzy inference system, SSA is exploited to carry out the parametric optimization of the fuzzy model as well as to realize its structural optimization. IG realized with the aid of C-Means clustering helps determine the initial values of the apex parameters of the membership function of fuzzy model. The overall hybrid identification of fuzzy inference systems comes in the form of two optimization mechanisms: structure identification (such as the number of input variables to be used, a specific subset of input variables, the number of membership functions, and polyno.mial type) and parameter identification (viz. the apexes of membership function). The structure identification is developed by SSA and C-Means while the parameter estimation is realized via SSA and a standard least square method. The evaluation of the performance of the proposed model was carried out by using four representative numerical examples such as No.n-linear function, gas furnace, NO.x emission process data, and Mackey-Glass time series. A comparative study of SSA and PSO demonstrates that SSA leads to improved performance both in terms of the quality of the model and the computing time required. The proposed model is also contrasted with the quality of some "conventional" fuzzy models already encountered in the literature.

A Hybrid Genetic Ant Colony Optimization Algorithm with an Embedded Cloud Model for Continuous Optimization

  • Wang, Peng;Bai, Jiyun;Meng, Jun
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1169-1182
    • /
    • 2020
  • The ant colony optimization (ACO) algorithm is a classical metaheuristic optimization algorithm. However, the conventional ACO was liable to trap in the local minimum and has an inherent slow rate of convergence. In this work, we propose a novel combinatorial ACO algorithm (CG-ACO) to alleviate these limitations. The genetic algorithm and the cloud model were embedded into the ACO to find better initial solutions and the optimal parameters. In the experiment section, we compared CG-ACO with the state-of-the-art methods and discussed the parameter stability of CG-ACO. The experiment results showed that the CG-ACO achieved better performance than ACOR, simple genetic algorithm (SGA), CQPSO and CAFSA and was more likely to reach the global optimal solution.

A new training method of multilayer neural networks using a hybrid of backpropagation algorithm and dynamic tunneling system (후향전파 알고리즘과 동적터널링 시스템을 조합한 다층신경망의 새로운 학습방법)

  • 조용현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.4
    • /
    • pp.201-208
    • /
    • 1996
  • This paper proposes an efficient method for improving the training performance of the neural network using a hybrid of backpropagation algorithm and dynamic tunneling system.The backpropagation algorithm, which is the fast gradient descent method, is applied for high-speed optimization. The dynamic tunneling system, which is the deterministic method iwth a tunneling phenomenone, is applied for blobal optimization. Converging to the local minima by using the backpropagation algorithm, the approximate initial point for escaping the local minima is estimated by the pattern classification, and the simulation results show that the performance of proposed method is superior th that of backpropagation algorithm with randomized initial point settings.

  • PDF