• 제목/요약/키워드: Hybrid metrics

Search Result 40, Processing Time 0.712 seconds

Damage detection in structural beam elements using hybrid neuro fuzzy systems

  • Aydin, Kamil;Kisi, Ozgur
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1107-1132
    • /
    • 2015
  • A damage detection algorithm based on neuro fuzzy hybrid system is presented in this study for location and severity predictions of cracks in beam-like structures. A combination of eigenfrequencies and rotation deviation curves are utilized as input to the soft computing technique. Both single and multiple damage cases are considered. Theoretical expressions leading to modal properties of damaged beam elements are provided. The beam formulation is based on Euler-Bernoulli theory. The cracked section of beam is simulated employing discrete spring model whose compliance is computed from stress intensity factors of fracture mechanics. A hybrid neuro fuzzy technique is utilized to solve the inverse problem of crack identification. Two different neuro fuzzy systems including grid partitioning (GP) and subtractive clustering (SC) are investigated for the highlighted problem. Several error metrics are utilized for evaluating the accuracy of the hybrid algorithms. The study is the first in terms of 1) using the two models of neuro fuzzy systems in crack detection and 2) considering multiple damages in beam elements employing the fused neuro fuzzy procedures. At the end of the study, the developed hybrid models are tested by utilizing the noise-contaminated data. Considering the robustness of the models, they can be employed as damage identification algorithms in health monitoring of beam-like structures.

HLPSP: A Hybrid Live P2P Streaming Protocol

  • Hammami, Chourouk;Jemili, Imen;Gazdar, Achraf;Belghith, Abdelfettah;Mosbah, Mohamed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.3
    • /
    • pp.1035-1056
    • /
    • 2015
  • The efficiency of live Peer-to-Peer (P2P) streaming protocols depends on the appropriateness and the management abilities of their underlying overlay multicast. While a tree overlay structure confines transmission delays efficiently by maintaining deterministic delivery paths, an overlay mesh structure provides adequate resiliency to peers dynamics and easy maintenance. On the other hand, content freshness, playback fluidity and streaming continuity are still challenging issues that require viable solutions. In this paper, we propose a Hybrid Live P2P Streaming Protocol (HLPSP) based on a hybrid overlay multicast that integrates the efficiency of both the tree and mesh structures. Extensive simulations using OMNET++ are conducted to investigate the efficiency of HLPSP in terms of relevant performance metrics, and position HLPSP with respect to DenaCast the enhanced version of the well-known CoolStreaming protocol. Simulation results show that HLPSP outperforms DenaCast in terms of startup delay, end-to-end delay, play-back delay and data loss.

An Empirical Analysis of Sino-Russia Foreign Trade Turnover Time Series: Based on EMD-LSTM Model

  • GUO, Jian;WU, Kai Kun;YE, Lyu;CHENG, Shi Chao;LIU, Wen Jing;YANG, Jing Ying
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.159-168
    • /
    • 2022
  • The time series of foreign trade turnover is complex and variable and contains linear and nonlinear information. This paper proposes preprocessing the dataset by the EMD algorithm and combining the linear prediction advantage of the SARIMA model with the nonlinear prediction advantage of the EMD-LSTM model to construct the SARIMA-EMD-LSTM hybrid model by the weight assignment method. The forecast performance of the single models is compared with that of the hybrid models by using MAPE and RMSE metrics. Furthermore, it is confirmed that the weight assignment approach can benefit from the hybrid models. The results show that the SARIMA model can capture the fluctuation pattern of the time series, but it cannot effectively predict the sudden drop in foreign trade turnover caused by special reasons and has the lowest accuracy in long-term forecasting. The EMD-LSTM model successfully resolves the hysteresis phenomenon and has the highest forecast accuracy of all models, with a MAPE of 7.4304%. Therefore, it can be effectively used to forecast the Sino-Russia foreign trade turnover time series post-epidemic. Hybrid models cannot take advantage of SARIMA linear and LSTM nonlinear forecasting, so weight assignment is not the best method to construct hybrid models.

Mobility-Based Clustering Algorithm for Multimedia Broadcasting over IEEE 802.11p-LTE-enabled VANET

  • Syfullah, Mohammad;Lim, Joanne Mun-Yee;Siaw, Fei Lu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.3
    • /
    • pp.1213-1237
    • /
    • 2019
  • Vehicular Ad-hoc Network (VANET) facilities envision future Intelligent Transporting Systems (ITSs) by providing inter-vehicle communication for metrics such as road surveillance, traffic information, and road condition. In recent years, vehicle manufacturers, researchers and academicians have devoted significant attention to vehicular communication technology because of its highly dynamic connectivity and self-organized, decentralized networking characteristics. However, due to VANET's high mobility, dynamic network topology and low communication coverage, dissemination of large data packets (e.g. multimedia content) is challenging. Clustering enhances network performance by maintaining communication link stability, sharing network resources and efficiently using bandwidth among nodes. This paper proposes a mobility-based, multi-hop clustering algorithm, (MBCA) for multimedia content broadcasting over an IEEE 802.11p-LTE-enabled hybrid VANET architecture. The OMNeT++ network simulator and a SUMO traffic generator are used to simulate a network scenario. The simulation results indicate that the proposed clustering algorithm over a hybrid VANET architecture improves the overall network stability and performance, resulting in an overall 20% increased cluster head duration, 20% increased cluster member duration, lower cluster overhead, 15% improved data packet delivery ratio and lower network delay from the referenced schemes [46], [47] and [50] during multimedia content dissemination over VANET.

Comparison and Implementation of Optimal Time Series Prediction Systems Using Machine Learning (머신러닝 기반 시계열 예측 시스템 비교 및 최적 예측 시스템 구현)

  • Yong Hee Han;Bangwon Ko
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.4
    • /
    • pp.183-189
    • /
    • 2024
  • In order to effectively predict time series data, this study proposed a hybrid prediction model that decomposes the data into trend, seasonality, and residual components using Seasonal-Trend Decomposition on Loess, and then applies ARIMA to the trend component, Fourier Series Regression to the seasonality component, and XGBoost to the remaining components. In addition, performance comparison experiments including ARIMA, XGBoost, LSTM, EMD-ARIMA, and CEEMDAN-LSTM models were conducted to evaluate the prediction performance of each model. The experimental results show that the proposed hybrid model outperforms the existing single models with the best performance indicator values in MAPE(3.8%), MAAPE(3.5%), and RMSE(0.35) metrics.

Clustering-Based Mobile Gateway Management in Integrated CRAHN-Cloud Network

  • Hou, Ling;Wong, Angus K.Y.;Yeung, Alan K.H.;Choy, Steven S.O.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.7
    • /
    • pp.2960-2976
    • /
    • 2018
  • The limited storage and computing capacity hinder the development of cognitive radio ad hoc networks (CRAHNs). To solve the problem, a new paradigm of cloud-based CRAHN has been proposed, in which a CRAHN will make use of the computation and storage resources of the cloud. This paper envisions an integrated CRAHN-cloud network architecture. In this architecture, some cognitive radio users (CUs) who satisfy the required metrics could perform as mobile gateway candidates to connect other ordinary CUs with the cloud. These mobile gateway candidates are dynamically clustered according to different related metrics. Cluster head and time-to-live value are determined in each cluster. In this paper, the gateway advertisement and discovery issues are first addressed to propose a hybrid gateway discovery mechanism. After that, a QoS-based gateway selection algorithm is proposed for each CU to select the optimal gateway. Simulations are carried out to evaluate the performance of the overall scheme, which incorporates the proposed clustering and gateway selection algorithms. The results show that the proposed scheme can achieve about 11% higher average throughput, 10% lower end-to-end delay, and 8% lower packet drop fractions compared with the existing scheme.

Quantitative Project Management Using Comparison of CMMI and PMBOK (CMMI와 PMBOK의 비교 분석을 통한 정량적 프로젝트 관리)

  • Kim Kyong H.;Kim Heung J.;Park Young B.
    • The KIPS Transactions:PartD
    • /
    • v.12D no.4 s.100
    • /
    • pp.601-608
    • /
    • 2005
  • It is very important to improve qualify, cost and the necessary period for production in software development project. In order to improve software quality, cost and period, final product as well as a project planning and process itself are concerned. In CMMI of SEI and ISO/IEC 15504 (SPICE), the process for the project management is specified. Recently, as a method of total management - including man power, budget, and schedule - PMBOK is introduced. The detailed and specific management method in PMBOK results in multiple experiments that apply PMBOK to enterprise environment. In this paper, hybrid method of CMMI and PMBOK is proposed to obey CMMI, at the same time, to apply the detailed and specific management method in PMBOK and develop metrics for the method.

Hybrid machine learning with HHO method for estimating ultimate shear strength of both rectangular and circular RC columns

  • Quang-Viet Vu;Van-Thanh Pham;Dai-Nhan Le;Zhengyi Kong;George Papazafeiropoulos;Viet-Ngoc Pham
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.145-163
    • /
    • 2024
  • This paper presents six novel hybrid machine learning (ML) models that combine support vector machines (SVM), Decision Tree (DT), Random Forest (RF), Gradient Boosting (GB), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with the Harris Hawks Optimization (HHO) algorithm. These models, namely HHO-SVM, HHO-DT, HHO-RF, HHO-GB, HHO-XGB, and HHO-CGB, are designed to predict the ultimate strength of both rectangular and circular reinforced concrete (RC) columns. The prediction models are established using a comprehensive database consisting of 325 experimental data for rectangular columns and 172 experimental data for circular columns. The ML model hyperparameters are optimized through a combination of cross-validation technique and the HHO. The performance of the hybrid ML models is evaluated and compared using various metrics, ultimately identifying the HHO-CGB model as the top-performing model for predicting the ultimate shear strength of both rectangular and circular RC columns. The mean R-value and mean a20-index are relatively high, reaching 0.991 and 0.959, respectively, while the mean absolute error and root mean square error are low (10.302 kN and 27.954 kN, respectively). Another comparison is conducted with four existing formulas to further validate the efficiency of the proposed HHO-CGB model. The Shapely Additive Explanations method is applied to analyze the contribution of each variable to the output within the HHO-CGB model, providing insights into the local and global influence of variables. The analysis reveals that the depth of the column, length of the column, and axial loading exert the most significant influence on the ultimate shear strength of RC columns. A user-friendly graphical interface tool is then developed based on the HHO-CGB to facilitate practical and cost-effective usage.

Optimal Hyper Analytic Wavelet Transform for Glaucoma Detection in Fundal Retinal Images

  • Raja, C.;Gangatharan, N.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1899-1909
    • /
    • 2015
  • Glaucoma is one of the most common causes of blindness which is caused by increase of fluid pressure in the eye which damages the optic nerve and eventually causing vision loss. An automated technique to diagnose glaucoma disease can reduce the physicians’ effort in screening of Glaucoma in a person through the fundal retinal images. In this paper, optimal hyper analytic wavelet transform for Glaucoma detection technique from fundal retinal images is proposed. The optimal coefficients for transformation process are found out using the hybrid GSO-Cuckoo search algorithm. This technique consists of pre-processing module, optimal transformation module, feature extraction module and classification module. The implementation is carried out with MATLAB and the evaluation metrics employed are accuracy, sensitivity and specificity. Comparative analysis is carried out by comparing the hybrid GSO with the conventional GSO. The results reported in our paper show that the proposed technique has performed well and has achieved good evaluation metric values. Two 10- fold cross validated test runs are performed, yielding an average fitness of 91.13% and 96.2% accuracy with CGD-BPN (Conjugate Gradient Descent- Back Propagation Network) and Support Vector Machines (SVM) respectively. The techniques also gives high sensitivity and specificity values. The attained high evaluation metric values show the efficiency of detecting Glaucoma by the proposed technique.

Human Laughter Generation using Hybrid Generative Models

  • Mansouri, Nadia;Lachiri, Zied
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1590-1609
    • /
    • 2021
  • Laughter is one of the most important nonverbal sound that human generates. It is a means for expressing his emotions. The acoustic and contextual features of this specific sound are different from those of speech and many difficulties arise during their modeling process. During this work, we propose an audio laughter generation system based on unsupervised generative models: the autoencoder (AE) and its variants. This procedure is the association of three main sub-process, (1) the analysis which consist of extracting the log magnitude spectrogram from the laughter database, (2) the generative models training, (3) the synthesis stage which incorporate the involvement of an intermediate mechanism: the vocoder. To improve the synthesis quality, we suggest two hybrid models (LSTM-VAE, GRU-VAE and CNN-VAE) that combine the representation learning capacity of variational autoencoder (VAE) with the temporal modelling ability of a long short-term memory RNN (LSTM) and the CNN ability to learn invariant features. To figure out the performance of our proposed audio laughter generation process, objective evaluation (RMSE) and a perceptual audio quality test (listening test) were conducted. According to these evaluation metrics, we can show that the GRU-VAE outperforms the other VAE models.