
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 3, Mar. 2015                                            1035 

Copyright ⓒ 2015 KSII 

 

 

http://dx.doi.org/10.3837/tiis.2015.03.011                                                                                          ISSN : 1976-7277 

HLPSP: A Hybrid Live P2P Streaming 
Protocol 

 
Chourouk Hammami

1
, Imen Jemili

1
, Achraf Gazdar

2
, Abdelfettah Belghith

2
 

and Mohamed Mosbah
3
 

1 HANA Lab, ENSI, University of Manouba 

Manouba 2010, Tunis, Tunisia 

[e-mail: chourouk.ham@gmail.com, imen.jemili@hanalab.org] 
2 College of Computer and Information Sciences, King Saud University,  

Riyadh 11543, Saudi Arabia, 

[e-mail: abelghith@ksu.edu.sa , agazdar@ksu.edu.sa] 
3 LaBRI, University of Bordeaux,  

Talence, France 

[e-mail: mohamed.mosbah@labri.fr] 

*Corresponding author: abdelfettah Belghith 

 

Received August 11, 2014; revised December 21, 2014; accepted January 21, 2015; 

published March 31, 2015 

 

Abstract 
 

The efficiency of live Peer-to-Peer (P2P) streaming protocols depends on the appropriateness 

and the management abilities of their underlying overlay multicast. While a tree overlay 

structure confines transmission delays efficiently by maintaining deterministic delivery paths, 

an overlay mesh structure provides adequate resiliency to peers dynamics and easy 

maintenance. On the other hand, content freshness, playback fluidity and streaming continuity 

are still challenging issues that require viable solutions. 

In this paper, we propose a Hybrid Live P2P Streaming Protocol (HLPSP) based on a hybrid 

overlay multicast that integrates the efficiency of both the tree and mesh structures. Extensive 

simulations using OMNET++ are conducted to investigate the efficiency of HLPSP in terms 

of relevant performance metrics, and position HLPSP with respect to DenaCast the enhanced 

version of the well-known CoolStreaming protocol. Simulation results show that HLPSP 

outperforms DenaCast in terms of startup delay, end-to-end delay, play-back delay and data 

loss. 
 

 

Keywords: Live Streaming, Peer-to-Peer, Hybrid P2P Overlay 



1036                                                                Hammami et al.: HLPSP : A Hybrid Live P2P Streaming Protocol 

1. Introduction 

With the widespread penetration of broadband accesses, multimedia services are getting 

increasingly popular among users and are contributing to a significant amount of today’s 

Internet traffic. Live video applications in the Internet, involving live media streaming from a 

source to a large population of users, have become more and more popular. These 

delay-sensitive applications often require the collective use of massively distributed network 

resources and impose challenging constraints to satisfy robust and reliable support of media 

streaming. Therefore, such applications are not adequately supported by the traditional 

client-server architecture in the Internet.   

Relying on an overlay multicast for media streaming over the Internet has been intensively 

studied. The overlay multicast can be classified into two broad categories [1]: 

infrastructure-based overlay multicast and peer-to-peer (P2P) overlay multicast. 

The infrastructure-based overlay multicast deploys dedicated proxies at the edge of the 

Internet by the service provider, and constructs a collaborative service overlay network (SON). 

Due to the relative stability of proxy nodes, such a solution provides a robust and reliable 

media streaming for many commercial services [1]. Despite enabling a resilient market that 

can be easily controlled and managed by service providers, the cost issues remain a problem to 

be solved because of the deployment of a large number of servers throughout the Internet. 

On the other hand, Peer-to-Peer (P2P) overlay networks enable efficient resource sharing in 

distributed environments and provide a highly effective and scalable solution to this problem. 

Such an approach eliminates the need for dedicated servers to mediate between end systems 

and exploits client resources to forward the media and to offer a flexible and scalable solution 

for live streaming. Currently, there are many commercially available P2P streaming and 

multicast video application systems [2-7], such as DONet/CoolStreaming [2], PPlive [7] and 

PPStream [6]. 

In this paper, we focus on P2P overlay networks. There are two widely adopted overlay 

approaches in P2P-based live streaming systems: the tree approach and the mesh approach. 

The tree-based protocols [8, 9] build a tree overlay on the application layer. It borrows its 

concepts from IP multicast where the media is pushed from the root to interior nodes towards 

the leaf nodes. The short latency of the data delivery is the main benefit of this approach. 

However, the tree structure is very fragile since a failure of a node close to the root would 

affect most of the traffic forwarded to descendant interior nodes. In fact, when any interior 

member leaves, the tree becomes disconnected and the children of this departing node need to 

be reconnected to the tree. Frequent tree reconnections at peer churns may entail a 

considerable control overhead and would greatly affect the system performance. 

An alternative to tree structured overlays is the mesh structure [3, 10, 11, 28] in which the 

nodes are rather connected in a mesh. They use the exchanged availability of the data between 

partners to guide the data flow. Since peers can receive data from multiple peers and provide 

data to several others, the mesh structure is more reliable and is highly resilient to node failures 

than that of a tree. However, the mesh structure is subject to unpredictable latencies due to 

frequent exchanges of notifications. 

The question naturally arises as to how we can design an overlay structure that confines 

transmission delays efficiently by maintaining deterministic delivery paths as in the tree 

structure, yet provides adequate resiliency and easy maintenance to peers' dynamics as in the 

mesh structure. In this paper, we propose a new design for the tree-based approach to remedy 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 3, March 2015                                   1037 

its shortages while retaining its advantages. We provide a more resilient overlay to peers' 

dynamics by exploiting the benefits of mesh-based P2P overlays which outperform the P2P 

tree-based approaches in term of much better reliability and smaller maintenance overhead.  

Our proposed approach is called Hybrid Live P2P Streaming Protocol (HLPSP). It 

organizes peers into clusters according to their uploading capacities (a mesh topology), 

moving consequently the powerful peers closer to the source. Each cluster represents a level of 

uploading capacity. A mesh topology connects the nodes within each cluster in the overlay. 

Similar to the tree topology, the multimedia contents are delivered from the source, 

representing the highest level (level 0) down to the lowest levels. Each peer maintains two 

sets: a set of partners from which to retrieve media content and another set of partners for 

which to serve and provide media content. As such, the HLPSP is based on a hybrid topology 

trying to insure a certain tradeoff between the tree and the mesh topologies by combining their 

benefits. 

The rest of this paper is organized as follows: In section 2, we present related relevant works 

in this area. Section 3 presents HLPSP, its overlay construction and the communication 

between the different actors. The performance evaluation of HLPSP is presented in section 4. 

Section 5 concludes the paper and briefly discusses some future research orientations. 

2. Related Work 

Existing P2P overlay multicast approaches for live streaming can be roughly classified into 

two categories [12]: the tree-based overlay multicast and the mesh-based P2P overlays. The 

central idea in the tree-based approach is to construct a multicast tree among end hosts using 

an overlay network. The tree protocol organizes peers into a tree rooted at the source server. In 

this structure, nodes without children are called leaf nodes and internal nodes are called branch 

nodes. Streaming flows originating from the root go down along branch nodes until reaching 

the leaf nodes. NICE [8] and ZigZag [9] are examples of this kind of protocols. This 

single-tree based overlay suffers from two drawbacks:1) potentially a poor resource usage and 

unfair contributions since a leaf node cannot contribute with its upload capacity; 2) given the 

dynamic nature of nodes, the departure or failure of a node close to the source can cause 

significant network disruption and requires a re-construction of the overlay topology. The 

multi-tree approach [5, 13] was introduced to tackle single-tree’s problems. In such an 

approach, the source encodes the stream into several sub-streams and distributes each 

substream along a separate overlay tree. There are two key improvements achieved by the 

multi-tree solution. First, the overall system becomes more resilient since nodes in one tree are 

much less affected by failures of  nodes on another tree. Second, the bandwidth of all the nodes 

can be more fairly utilized as long as each node can only be a leaf of just one tree. However, a 

multi-tree scheme is more complex to manage specially in the presence of high network 

dynamics. A further enhancement technique was proposed by [26], where the authors 

introduced an optimal resource sharing between nodes in the P2P network. Their idea consists 

on making leaf nodes forward the video segments to nodes experiencing difficulties while 

downloading data from a parent peer with limited downlink bandwidth in a tree-based P2P 

overlay. They also proposed an optimal distribution of the downlink of nodes in a mesh-based 

overlay. 

To improve the stability of service, mesh-based protocols have been proposed where each 

peer can accept media data from multiple parents and may provide servics to multiple children. 

Meshes based on the Gossip protocol thrive to find fresh peers. As such, this structure is highly 

resilient to node failures, however it remains subject to unpredictable latencies caused by 



1038                                                                Hammami et al.: HLPSP : A Hybrid Live P2P Streaming Protocol 

frequent exchanges of notifications and requests. PPlive [7], DONet/Coolstreaming [2, 11] 

and Prime [10] are examples of mesh based systems. The PPLive software [7] implements two 

major application level protocols: a gossip-based protocol for peer management and channel 

discovery, and a P2P-based video distribution protocol for a high quality video streaming. 

When an end-user becomes a PPLive peer node, it sends out a query message to the PPLive 

channel server to obtain an updated channel list. After selecting one channel to watch, the peer 

sends out multiple query messages to some root servers to retrieve an online peer list for this 

channel. Peers are identified within the list by their IP addresses and port numbers. Upon 

receiving a peer list, the PPLive client sends out probes to peers on the list to find active peers 

for the channel of interest. Some active peers may also return their own peer lists in the quest 

of helping the initial peer to find more peers. Consequently, peers share video chunks with 

each other. DONet/Coolstreaming [2, 11] aims to create a robust overlay mesh topology able 

to cope with node dynamics. In fact, peers gossip with one another for content availability 

information. As a result, a peer can independently select neighboring node(s) without any 

prior-structure constraint. The content delivery is based on a swarm-like technique using pull 

operations. The Coolstreaming protocol offers a  reasonable video playback quality, however, 

it exhibits a long initial start-up delay caused by its random peer selection process and the per 

block pulling operation, and a high failure rate in joining a video program. 

To improve performance, some hybrid systems combine tree and mesh structures to 

construct a data delivery overlay such as [14-19, 27]. The hybrid-based protocol DenaCast 

[14] is an enhanced version of the famous CoolStreaming protocol. It changes the way the 

CoolStreaming constructs its overlay. Within DenaCast, the tracker keeps a list of active peers 

in the network. Each peer requests neighbors from the tracker which returns some random 

peers based on the number mentioned in the request message. When a peer receives the 

neighbour candidates list, it starts getting neighbours by JOIN_REQ, JOIN_RSP and 

JOIN_ACK messages. We note that DenaCast does not differentiate between peers capacity, 

that is to say each peer has a fixed number of neighbours. In addition, the neighbours sent by 

the tracker are chosen randomly which makes the maintaining of the neighbourhood relation 

obsolete. Most of the hybrid solutions select some special nodes (based on some performance 

criteria) to construct the tree-based overlay after which these nodes communicate with their 

neighbours using a mesh topology. In contrast, the key idea of Treebone [15] is to identify a set 

of stable nodes to construct a tree-based backbone, called mtreebone. Most of the streaming 

data is pushed through the treebone and eventually reaches the outskirts. They also design a set 

of overlay constructions and evolution algorithms to minimize the startup and the transmission 

delays. Hence, the performance of the overlay closely depends on a small set of backbone 

nodes. However, it poses a series of unique and critical design challenges, in particular, the 

identification of stable nodes and seamless data delivery using both push and pull methods. In 

[17, 18], the authors presented the design of a P2P media streaming platform, named 

CliqueStream, that exploits the properties of a clustered P2P overlay to achieve both the 

locality properties and the robustness. It relies on the existence of more stable and higher 

bandwidth nodes in the network to allow the construction of efficient delivery structures 

without causing too much overhead from churn. It elects one or more stable nodes of highest 

available bandwidth in each cluster and assigns a special relaying role to them. To maintain 

transmission efficiency, a content delivery tree is constructed among the stable nodes using the 

structure in the underlying routing substrate and the content is pushed through them. Less 

stable nodes within a given cluster participate then in the content dissemination and the pull of 

the content creating a mesh around the stable nodes. However, the overhead for clusterhead 

selection and maintenance still remains high. In [27], the authors proposed a hybrid P2P 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 3, March 2015                                   1039 

overlay construction where the peers are divided into domains. A domain represents a set of 

nodes having the same behavior and are near to each other to increase the stability of the 

domain. The nodes within the same domain and the same local network are organized in a tree 

based overlay. A mesh network links the domains to each other. Each domain contains a 

special node which plays the role of the domain head, called sub-root. This node is selected 

based on its life duration and the amount of data delivered to other nodes within the same 

domain. However, details are missing on how to select the sub-root at runtime and how to 

select an alternative sub-root in case of departure. 

Besides, some other works have proposed overlay-construction techniques aiming to 

minimize the P2P traffic within the ISP networks through the design of P2P ISP-friendly 

solutions [29] and to avoid the free-rider behaviour by introducing peer incentives [28]. In this 

paper, we are rather assuming a full cooperation of all nodes in the P2P network without 

recourse to incintives which could be integrated in future work.    

While virtually all prior works rely mainly on a random peer selection scheme, our 

proposed HLPSP organizes the nodes on levels based on their uploading capacities. In HLPSP,  

the content flows consecutively from the source at the lowest level to higher levels according 

to the tree based topology while all the levels are interconnected according to the mesh based 

topology. In contrast to other hybrid solutions, HLPSP provides more than just one special 

node within the same level which increases continuity of downloading from the other nodes 

even if some nodes leave the network. The functional behaviour of HLPSP moves the 

powerful peers (in terms of the uploading capacity) close to the source which allows 

minimizing the end-to-end delay, and consequently maximizing the freshnes and serving the 

maximum numer of peers. 

3. Hybrid Live P2P Streaming Protocol: HLPSP 

HLPSP constructs its overlay based on the uploading capacities of the nodes. It enforces nodes 

with high capacities to be located closer to the source node. As such, a node with a limited 

upload capacity or bandwidth does not throttle the streaming and consequently does not 

degrade the system performance. Recall that P2P streaming is a sensitive delay application 

that requires stringent continuity. 

The central idea introduced by HLPSP [20] is to organize the nodes into levels based on 

their uploading capacities as illustrated on Fig. 1. The source of the media, which is supposed 

to have a large enough uploading capacity, is the unique node that occupies level 0 which is the 

base (lowest) level. All the other nodes are distributed into levels according to their uploading 

capacities. Each overlay level represents a predefined range of bandwidth or uploading 

capacity. Nodes having high uploading capacities are assigned to lower levels which are closer 

to the source node. Levels assigned to nodes other than the source, vary from level 1 (the 

lowest level) to level x (the highest level), where x>1. 



1040                                                                Hammami et al.: HLPSP : A Hybrid Live P2P Streaming Protocol 

 
 

Fig. 1. HLPSP overlay 

 

A node at level y (1<= y <= x) can be served by nodes, called active nodes, belonging to 

the same or a lower level i (1<= i<= y). The gathering of the media streaming from different 

active neighbors, is intended to increase the degree of cooperation which tacitely leads to a 

better playback continuity. A node at a given level j can serve nodes at the same level or at a 

higher level k (j<= k <= x), called passive nodes. Recall here that we do not consider the 

existence of  selfish participants which might delay or throttle forwarding the streamed data. 

Such a behavior can affect the overall streaming quality. We rely on node full cooperation to 

insure the propagation of  the streamed data in a relatively continuous way even with node 

dynamics. 

A salient feature of HLPSP is to insert a new coming node at the appropriate level which 

contributes to enhance the overlay performance. In fact, the functional behavior of our 

approach allows nodes joining the system to integrate the overlay and to be inserted in the 

appropriate level taking into account their uploading capacities and without disturbing the on 

going streaming of other nodes. Besides, to facilitate the overlay construction and 

maintenance phases, we add some intelligence to the tracker. It is the tracker responsibility to 

find suitable active neighbors when receiving the request of a new joining node to the system. 

In this way, we avoid disagreements and delays caused when trying to contact overloaded 

nodes or non existant nodes that already departed from the system. As such, we are able to 

reduce the startup delay and manage more efficiently node departures. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 3, March 2015                                   1041 

3.1 Overlay construction 

Three actors are involved in HLPSP: the media source, the tracker and the peers. Initially upon 

registering, the source sends its uploading capacity to the tracker. The later calculates the 

maximum number of passive peers for the source, denoted NPmax, according to the following 

formula: 

PieceSize/cityUploadCapamaxNP                                              (1) 

 

where UploadCapacity refers to the node uploading capacity and PieceSize corresponds to 

the average size of exchanged pieces. 

After achieving this step, the tracker starts accepting demands associated with this source 

streaming through neighbor requests sent by the peers. These requests are used in two cases:  

- Upon joining the system: when a new node joins the system, it contacts the tracker in 

order to obtain a list of available nodes having enough capacity to serve new peers. 

The number of these active nodes in the returned list is denoted NAcurrent. 

- During streaming: when the number of active nodes effectively serving a given peer, 

denoted by NAeffective, is less than the average NAeffective of this peer's level. 

Practically, not all NAcurrent active nodes are needed and used by the peer to 

download the required content pieces. In other words, NAeffective is always smaller 

than or equal to NAcurrent.  

Upon the reception of a neighbor request from a peer, the tracker responds by a neighbor 

response which contains the list of potential available active neighbors. 

Moreover, every peer sends periodically to the tracker an update message which contains 

the list of its current active neighbors and specifies the current effective neighbors selected for 

retrieving the requested pieces. 

3.2 Neighbor request handling 

Upon receiving a neighbor request from peer pi, the tracker verifies if this message is received 

for the first time. In such a case, it computes NPmax and NAmax, where NPmax refers to the 

maximum number of passive neighbors for this new peer according to equation 1, and NAmax 

refers to the maximum number of active neighbors for this new peer computed as in formula 2 

below. Otherwise, the tracker just submits an updated list of active neighbors based on the 

already calculated values of NAmax and NPmax. The updating of this list is accomplished by 

the same selection process.  
 

PieceSizepacityDownloadCaNA /max                                        (2) 

 

where DownloadCapacity refers to the requesting peer downloading capacity and PieceSize 

corresponds to the average size of exchanged pieces. 

Once these two variables are calculated, the tracker assigns peer pi to an appropriate level, 

based mainly on the number of its calculated passive neighbors (i.e.; its uploading capacity). A 

proper selection process, given formely by Algorithm 1 below, is performed by the tracker to 

provide each newly joined node with a list of  active nodes, denoted ListeNA. ListeNA contains 

a list of triplets (pi, type, pk) where pi is the identity of the peer requesting the list of active 

neighbors, type is either 1 or 2 depending on the type of the join_request to be executed by pi, 

and pk is either null or a peer identity in case of redirection. This will be detailed in Section 3.3 

below. The active nodes are designated from the lower levels starting from the source down to 

and including the level of peer pi. Nodes from the lower layers and the same layer that still 



1042                                                                Hammami et al.: HLPSP : A Hybrid Live P2P Streaming Protocol 

have sufficient remaining uploading capacities able to serve the new joining node, are 

designated as potential active nodes to within a predefined threshold. 

The use of multiple active neighbors provides a high system resilience and reliability as the 

departure of one or few active neighbors does not impact the streaming continuity. Algorithm1 

details the HLPSP selection process.  

First of all, the tracker computes NAcurrent the size limit of  ListeNA which is equal to the 

minimum between NAmax of the requesting peer and a predefined threshold th1 set to 10 (this 

value was choosen based on several conducted simulation experiments). This limitation of the 

upper size of ListeNA to th1 is due to the state of the art of current Internet access technologies, 

such as 4G and next coming 5G, which provide high access bandwidth. Formulas 1 and 2 give 

then large numbers of respectively passive neighbors NPmax and acive neighbors NAmax. 

This large number of passive peers (that in turn would be seen as a host of active neighbors by 

peers of higher levels) is neither needed in practice nor beneficial as it affects negatively the 

overlay performance. On the other hand, for an already connected peer asking for ListeNA 

updating, the tracker will include a number of  active neighbors equal to the the average 

NAeffective of the requesting peer's level, but greater or equal to a second predefined 

threshold denoted by th2.  The initial value of th2 is set to 2 according to conducted simulation 

measurements.  

Secondly, the tracker selects the set of active neighbors to deliver to the requesting peer pi. 

This is done by parsing levels starting from level 0 until the level of pi. This parsing done in 

this order supplies active neighbors closer to the source which would garantee better 

performance as it will be investigated and shown later. At each level, the tracker tries looking 

for peers having NPmax > NPcurrent, where NPcurrent represents the current number of 

passive neighbors being actually served. The tracker stops the parsing whenever ListeNA 

attains its upper size NAcurrent as described earlier. However, if after finishing the complete 

parsing, ListeNA still contains less than th2 active neighbors then the tracker launches an 

overlay redirection procedure for the account of peer pi. This overlay redirection or patching 

procedure consists in finding a peer pj on the same level as the new coming peer pi or on a 

lower level that serves a passive node pk at a higher level than that of the level computed by the 

tracker for pi. This search is performed in the order starting from the level of requesting peer pi 

and backwards to the source. If such peers (the passive peer pk and its active peer pj) are found, 

then a redirection will be performed; meaning that pk will be disconnected from its active peer 

pj and will be reconnected to pi instead. As for pi, it will connect to pj as an additional active 

peer and of course pi will serve pk as one of its passive peer. This will be repeated as long as 

needed to attain a number of active peers greater or equal to th2 (the second part of Algorithm 

1 lines 14-27). 

 

Algorithm 1  Peer Selection Process   
/* Building ListeNA upon receiving a neighbor request from a new peer pi */ 

 

Require: Peer identity pi, level(pi), NAcurrent(pi), th2  

Ensure: Fill the ListeNA((pi , type, peer id)) 

1:  lev  ← 0 

2: /* search for active neighbors that will serve peer pi*/ 

3:  while lev <= level(pi) and sizeof (ListeNA(pi)) < NAcurrent(pi) do 

4:  Let CANDIDATE be the set of peers of level lev having  

5:   NAeffective <= NAcurrent 

6:  repeat  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 3, March 2015                                   1043 

7:   Let pj in CANDIDATE  

8:   Remove pj from CANDIDATE 

9:   Add  (pj,  type 1, null ) to ListeNA(pi)  

10:   Update sizeof (ListeNA(pi)) 

11:  until CANDIADTE=Ø  or sizeof (ListeNA(pi)) = NAcurrent(pi) 

12:   lev ← lev+1 

13:  end while 

14: /* redirection procedure for the account of peer pi*/ 

15:  lev ← level(pi) 

16: while lev >= 0 and sizeof (ListeNA(pi)) < th2 do 

17: Let CANDIDATE be the set of peers at level lev other than pi having passive 

neighbors belonging to levels lower than lev 

18:  Let REDIRECTED= Ø  

19:  repeat 

20:   Let pj in CANDIDATE and let pk one of its passive neighbors at  

   level lower than that of pi and not in REDIRECTED 

21:   Remove pj from CANDIDATE 

22:   Add pk to REDIRECTED 

23:   Add  (pj,  type 2, pk ) to ListeNA(pi)  

24:   Update sizeof (ListeNA(pi))   

25:  until CANDIADTE=Ø  or sizeof (ListeNA(pi)) = th2 

26:   lev ← lev-1 

27:  end while 

 

3.3 Tracker response handling  

Once peer pi receives the tracker response (i.e.; the list of triplets ListeNA), it starts establishing 

its neighborhood relationships. Three types of messages can be exchanged between 

coordinating peers: the join_request, the join_response and the join_deny depending on the 

type found in each triplet in ListeNA. A join_request is sent by pi to every active neighbor in the 

ListeNA provided by the tracker. We can distinguish between two types of join-request 

messages: 

 

1. Direct join_request (Type 1): peer pi sends a join_request (type 1) to each peer 

tagged as type 1 in ListeNA in the quest to be connected as a passive node. Each of the 

solicited neighbors responds pi with a join_response accepting being its new active 

neighbor. This case is illustrated through the example portrayed on Fig. 2. The source 

node is always a supplier, meaning that it can only have passive neighbors. In the 

example, the source can supports up to 6 passive peers. Just under each peer, a triplet 

indicates the level of the peer, its NAmax and its NPmax. A newcomer P6 has been 

assigned level 1 by the tracker according to its uploading capacity. ListeNA(P6), the 

list of active neighbors provided by the tracker to peer P6, should contain the 

following triplets: (source, type 1, null) (P1, type 1, null).  Peer P6 sends a 

join_request to the source and another one to P1. Peer P6 has currently NAeffective=2, 

NPmax=3 and NAmax=3. The source and peer P1 respond P6 positively using 

join_response and the connections will be set up. Recall, we are here using th2=2. 
 



1044                                                                Hammami et al.: HLPSP : A Hybrid Live P2P Streaming Protocol 

 
Fig. 2. Case of Direct join request 

. 

2. Redirection request (Type 2): One of the main innovations introduced by our 

approach is the concept of redirection allowing a new coming pi to be inserted in the 

appropriate place in a way to harness its uploading capacity suitably. This case arises 

when the tracker in its scan from the source up to the level of the requesting peer pi 

cannot find enough active peers to serve pi (line 6 of Algorithm 1); that is the 

constructed ListeNA(pi) contains less than th1 entries. Consequently, the tracker 

launches a scan starting from pi 's level down to the source in the quest of an active 

neighbor candidate pj (which currently has no more room to accept more passive 

neighbors) having one of its current passive neighbors, say pk, assigned to a greater 

level ( meaning pk has a lower uploading capacity than pi) than the requesting pi. The 

idea is to prune the relation (the connection) between pj and pk meaning that pj is no 

more an active neighbor for pk, establish pj as an active neighbor of pi, and establish pi 

as an active neighbor of pk. This is the redirection procedure that redirects peer pk to 

be served by pi instead of pj and provides pi with pj as an additional active neighbor. 

The rationale behind this is twofold. First, this enforces th2 to guarantee fluidity and 

continuity of the streaming. Second, peer pi has a higher uploading capacity than pk 

and therefore avoids the potential traffic throttling or bottleneck that might be caused 

by pk. Upon receiving a join request of type 2 from pi, peer pj sends a join deny to its 

passive peer pk and encloses the address of pi within the deny message. Thanks to this 

information, passive peer pk sends a join_request to its new active neighbor peer pi. 

Finally, peer pj sends a join_response to pi accepting being its new active neighbor. It 

should be noticed that a passive peer such as pk cannot be involved in another 

additional redirection for the count of the same peer pi otherwise it will be deprived 

from an active peer for each additional redirection. This is enforced by using the set 

REDIRECTED in Algorithm 1. 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 3, March 2015                                   1045 

 
Fig. 3. a. Case of Redirection request 

 

 

The example, illustrated in Fig. 3. a, exhibits this situation where peer P6, assigned to 

level 1, tries to integrate the overlay. As th2 is set to 2, we need to find at least two 

active neighbors to serve P6. Unfortunately the source at level 0 and P1 at level 1 

cannot accept to serve P6 or any additional passive peer. A redirection is therefore 

required. The tracker through its selection process (Algorithm 1 lines 14-27) detects 

that P2 being at levels 2 is connected to P1 which is at the same level as P6. As such, 

P2 and its active peer P1 are a first case of redirection. Then it detects that P3 at level 

3 is connected to the source, and therefore constitutes a second case of redirection. As 

a result the tracker constitutes the ListeNA(P6) to contain the two triplets (P1, type 2, 

P2) and (source, type 2, P3) as shown on Fig. 3. a. Fig. 3. b portrays the establishment 

of the overlay after the execution of the two redirections.  

 

   



1046                                                                Hammami et al.: HLPSP : A Hybrid Live P2P Streaming Protocol 

 
Fig. 3. b. Case of Redirection request 

 

Periodically (each second in our conducted simulations), each peer sends to its passive 

neighbours a buffer map message containing the list of the media pieces or segments available 

in its own buffer. Recall that a video stream is usually divided into segments not necessarilly 

of the same length, and that the availability of the segments in the buffer of a node can be 

represented by a Buffer Map (BM). Based on the segment availability information periodically 

exchanged between nodes and their partners, each node is able to detect and schedule which 

segment is to be fetched from which partner. Two messages are exchanged between peers to 

download the media pieces:  

1. Chunk_request is sent by a peer to an active neighbor to ask for a data piece,  

2. Chunk_response is the response to the chunk_request and contains the requested piece. 

 

Note here that we are assuming and adopting the same piece and peer selection algorithms as 

in DenaCast. First, the requester peer calculates the number of potential suppliers for each 

segment (i.e., the active neighbors containing in their buffers the target segment) and then 

chooses the one with the highest bandwidth and enough available time. In this work, we are 

solely focusing on the enhancements achieved by overlay construction as P2P streaming 

concentrates rather on the efficient delivery of audio and video content under tight timing 

constraints. Other different HLPSP specific piece and peer selection schemes than those used 

in DenaCast could surely be envisioned which may constitute a future orientation to augment 

this current work.  

Finally, to accommodate overlay dynamics, each node sends periodically a message to the 

tracker announcing its existence and indicating the list of its effective active neighbors. BM 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 3, March 2015                                   1047 

messages are also considered by passive peers as keepalive messages to be able to detect node 

departures. 

4. HLPSP Performance Evaluation 

To investigate the performance of our proposed scheme in different scenarios, we 

conducted a simulation based study using the discrete event network simulator, the 

OMNET++ simulator [21]. The network infrastructure used in the experiments is generated by 

the GT-ITM module [22]. DenaCast [14] is already implemented in the selected simulation 

environment. We investigate and position the behavior of HLPSP to that of DenaCast [14] 

when varying the number of nodes for static and dynamic P2P networks. We also investigate 

the impact of peer departures on the performance of our HLPSP approache only as DenaCAst 

doen’t implement any departure handling mechanism.   

The main rational behind our choice of comparing our proposed approach to DenaCast lies 

in the fact that DenaCast is a major representative of hybrid protocols as it represents an 

enhanced version of the famous CoolStreaming [2, 11] system. Furthermore, all other relevant 

hybrid protocols presented previously in the section 2, lack several technical details to be 

implemented in an appropriate way for comparison.  

We used use Star Wars IV trace file to simulate a valid video stream which can be obtained 

from the Video Trace Library [23]. The streaming rate is set to 512 Kbps. The video stream is 

decomposed into several pieces having each an average size equal to 130 KB. Peers start 

playing (visualizing) the streamed media after a buffering of 40 seconds. This is comparable 

with the most widely deployed P2P live streaming system such as Sop-Cast’s that has an 

average startup time of 30-45 seconds [24]. For all our experiments, we considered only one 

media source with an upload bandwidth of 5 Mbps. 

The different peers uploding and downloading capacities are chosen so that they reflect the 

current deployed last mile access technologies. In fact, most peers are home users using the 

ADSL technology which is currently the prevalent deployed technology for Internet access 

from homes. P2P live streaming users are mostly individuals using essentially basic ADSL. 

Higher capacities offers are usually adopted by professionals and companies rather than 

induviduals at home. Taking this into account and in the quest to determine and position the 

performance of our HLPSP within a realistic set up, we adopted the following proportions: 

10% (download 24 mbits, upload 2mbits), 10% (download 20 mbits, upload 1.5 mbits), 10% 

(download 12 mbits, upload 1.3 mbits), 15% (download 8 mbits, upload 1.2 mbits), 25% 

(download 4 mbits, upload 1.1 mbits), 35% (download 2 mbits, upload 1 mbits). Table 1 

summarizes our simulation parameters. 

 
Table 1. Simulation parameters 

 

Parameter Value 

Maximum packet size 1000 Bytes 

Peer buffer  40 s 

Buffermap exchange period 1 s 

Selected trace file  Star Wars IV 

Video codec  MPEG4 Part I 

Video Frames Per Second (FPS)  25 



1048                                                                Hammami et al.: HLPSP : A Hybrid Live P2P Streaming Protocol 

Number of frames in a GoP  12 frames 

Average piece size 130 Kb 

Average video bit rate  512 Kbps 

Number of sources  1 

Capacity of peers 

 

10% (down 24 mbits, up 2mbits) 

10% (down 20 mbits, up 1.5 mbits) 

10% (down 12 mbits, up 1.3 mbits) 

15% (down 8 mbits, up 1.2 mbits) 

25% (down 4 mbits, up 1.1 mbits) 

35% (down 2 mbits, up 1 mbits) 

Threshold th1  10 

Threshold th2  2 

Number of levels  6 

Simulation duration  200 s 

Number of runs  10 
 

4.1 Performance metrics  

To evaluate the performances of HLPSP, we focus on the following performance metrics:  

1. Data Loss: defined as the percentage of video content that is lost to the original video 

content. Formely, it is given by: 
 

Data Loss= (number of unreceived pieces / total number of pieces) ×  10  (3) 

 

2. End-to-End delay : Let T represents the time elapsing from the instant of creation of 

a piece at the source and the instant of its reception at a destination peer. The 

End-to-End delay is then defined as the average of T over all peers and all pieces 

composing the streamed video. Formely, the End-to-End delay is given by:  

 

 



















 


n

1k

m

1j jkj,

m

tctr

n

1
delayendtoEnd                (4) 

where n represents the number of peers, m corresponds to the number of pieces 

composing the streamed video, k,jtr denotes the reception instant of piece j by peer k 

and jtc represents the creation instant of piece j at the source. 

3. Playback delay: represents the average delay between the start instant of the 

playback by peers and the streaming time on the server. Formely, it is given by:  

 



















 


n

m

m

j jkj

m

tcpt

n
delayPlayback

1

1 ,1                 (5) 

where n represents the number of peers, m corresponds to the number of pieces 

composing the streamed video, k,jpt denotes the start of the playback instant of piece j 

by peer k, and jtc represents the creation time of piece j at the source.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 3, March 2015                                   1049 

4. Startup delay: corresponds to the average delay between the connection instant to the 

overlay and the receiving instant of the first buffer map, over all peers. Formely, it is 

given by:   

 



n

1k

kk tctrbm
n

1
delayStartup   (6) 

where n represents the number of peers, ktrbm denotes the reception instant of the first 

buffermap by peer k and ktc represents the connection instant of peer k. 

 

5. Connection overhead: accounts for the required control messages exchanged among 

the peers and between the peers and the tracker during connection phases to the 

overlay. We purpusely ignored the signaling overhead caused by the exchange of the 

buffer maps. 

 

4.2 Simulation results  

We assume a peer arrival process following a that follows a uniform distribution with an 

inter-arrival time between 15 and 20 milliseconds. Fig. 4 represents the data loss percentage as 

a function of the number of peers. We clearly observe the sensitivity of DenaCast to the ADSL 

technology. In DenaCast, the suppliers of pieces are selected randomly, while in HLPSP, the 

tracker provides each peer with a list of active neighbors selected smartly; namely active 

neighbors closer to the source. HLPSP provides 3 times more fluidity than DenaCast. 

The startup delay in DenaCast is higher than that required by our HLPSP protocol as shown 

in Fig. 5. Recall that DenaCast selects neighbors randomly. In HLPSP, the tracker selects the 

active neighbors for a new arriving based on its actualized global view of the overlay. As such, 

the new arriving peer is guaranteed the confirmation of its join requests to these active peers. 

Moreover, in HLPSP peers periodically communicate to the tracker their effective active peers 

which allows the tracker to maintain a highly refreshed view of the overlay. In case of a peer 

departure, the traker upon a peer request finds and replace quickly and adequqtely the departed 

peer. We may notice on Fig. 5. for both protocols the decrease of the startup delay as the 

numbers of nodes becomes quit high. In this case of dense overlay, the tracker has more 

available active peers and consequently the choice of neighbors becomes more flexible. 

 
Fig. 4. The percentage of data loss as a function of the number of peers 



1050                                                                Hammami et al.: HLPSP : A Hybrid Live P2P Streaming Protocol 

 

 
Fig. 5. The Startup delay as a function of the nodes' number 

 

As we target live media streaming, freshness and continuity stand as primary constraints 

that need to be guaranteed. Fig. 6. portrays the end-to-end delay as a function of the number 

nodes for both protocols. We readily observe that data reception by peers is faster in HLPSP 

than in DenaCast due to the higher download capabilities in HLPSP. Many factors contribute 

to have a higher download speed of pieces in HLPSP than in DenaCast. First of all, the number 

of active neighbors of a peer is proportional to its download capacity, while for Denacast, all 

peers support the same number of partners without any consideration of their capacities. 

Second, in HLPSP, peers are supplied by active neighbors which are closer to the source. In 

addition, the redirection concept integrated in HLPSP allows peers to be placed in the 

appropriate levels and to exploit all their uploading capacities in serving other farther from the 

source. Moreover, in DenaCast, a peer requests and serves the pieces from and to a fixed 

number of peers selected randomly. 

 
Fig. 6. The End-to-End delay as a function of the number of nodes 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 3, March 2015                                   1051 

These results are consolidated by the simulation results of the Playback delay as a function 

of number of nodes as portrayed on Fig. 7. In HLPSP, peers experience a lesser playback delay. 

Selecting the appropriate active neighbors and placing nodes having high capacities close to 

the source yield much a better performance in terms of received video quality. 

 

 
Fig. 7. The Playback delay as a function of the number of nodes 

 

We now focus on the overhead associated with membership management. Fig. 8. a and Fig. 

8. b illustrate respectively the amount of signaling exchanged among the peers and that 

between the peers and the tracker. 

 

 
 

(a) Amount of signaling exchanged among the peers 



1052                                                                Hammami et al.: HLPSP : A Hybrid Live P2P Streaming Protocol 

 
 

(b) Amount of signaling exchanged between the peers and the tracker 

Fig. 8. Amount of signaling exchanged within the HLPSP and the DenaCast networks 

 

As expected, DenaCast requires less signaling among the peers than HLPSP since the later 

incorporates a much more involved peer placement and overlay updating which constitutes 

indeed one of its strength that allowed to accomplish better performances in terms of 

end-to-end delay, startup delay, playback delay and data loss. HLPSP not only inserts each 

new coming peer in the existing overlay at an the appropriate place, but also maintains an up to 

date view of the overlay which allows redirection and substitution of passive neighbors. The 

required additional join_request, join_response and join_deny messages naturally increase the 

control overhead. 

However as portrayed on Fig. 8. b, DenaCast exercices more signaling between the peers 

and the tracker. In DenaCast partners are chosen randomly, which may provides the new peer 

with a list including already departed or overloaded nodes. In such a case, join_request 

messages will either be denied or not answered which will force the new peer to contact again 

the tracker to obtain a new list. The tracker in HLPSP provides instead a list of potential active 

neighbors able really to serve. 

Now to ascertain the efficiency of our HLPSP protocol in a dynamic environment, we 

investigate the effect of the variation in the departure period of peers on the fluidity of the 

streamed video. We assume an overlay composed of 1000 nodes and we re-compute the data 

loss when 40% of the nodes leave the network at different simulation periods. We consider the 

folowing periods: uniform (30,50), uniform(30,80), uniform(30,110), uniform(30,150) and 

uniform(30,180). Recall that we have a simulation time of 200 seconds. Fig. 9 represents the 

percentage of data loss as a function of the departure period of  nodes. We do not consider 

DenaCast in Fig. 9 as it lacks completely a mechanism to handle the departure of nodes. We 

clearly observe that HLPSP remains quite resilient to departures even when they are 

concentrated within the first half of the simulation period. Recall that we assumed a 40% 

departures, a rather high rate of departure. As these departures, despite their high rate, get 

more spread out over the simulation time, the percentage of data loss gets much better and 

approaches that of a complete static environment.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 3, March 2015                                   1053 

 
Fig. 9. The percentage of data loss as a function of the departure time of nodes  

5. Conclusion 

In this paper, we proposed a new design for the P2P overlay construction based on hybrid 

architecture (tree and mesh), called HLPSP. Within HLPSP, a peer requests pieces from many 

parents according to its download capacity. Later, it serves these pieces to many children 

corresponding to its upload capacity. We allow each newcomer to be inserted in the overlay in 

the appropriate place based on a list of active neighbors, selected smartly by the tracker. 

Extensive simulations are conducted to evaluate and compare HLPSP against DenaCast, 

the enhanced version of CoolStreaming system. In particular, we showed through different 

scenarios that our proposal nicely outperforms DenaCast in terms of a better data fluidity, a 

better data freshness, a much lower of startup delay and a lower signaling overhead while 

communicating with the tracker. However the amount of signaling exchanged among the 

DenaCast peers is less than those of HLPSP. We believe that this is reasonable cost to pay with 

regards to the overall HLPSP performances.  

Further improvements might concern specific piece and peer selection procedures. 

Moreover,  streaming applications over P2P systems are deeply concerned with security; 

namely protection and privacy aspects [25]. Security aspects specific to HLPSP against 

malicious attacks, and integration of proper incentives are viable directions for further 

improvements. 

Acknowledgment 

This work was supported by the Research Center of the College of Computer and Information 

Sciences, King Saud University. 

References 

[1] B. Li, H. Yin, “Peer-to-peer live video streaming on the internet: issues, existing approaches, and 

challenges [peer-to-peer multimedia streaming],” IEEE Communications Magazine, vol. 45, no. 6, 

pp. 94-99. IEEE Press Piscataway, Jun. 2007. Article (CrossRef Link) 

http://dx.doi.org/10.1109/MCOM.2007.374425


1054                                                                Hammami et al.: HLPSP : A Hybrid Live P2P Streaming Protocol 

[2] X. Zhang, J. Liu, B. Li, T. Yum, “Coolstreaming/donet: a data-driven overlay network for 

peer-to-peer live media streaming,” in Proc. of the 24th Annual Joint Conference Of the IEEE 

International Conference on Computer Communications (INFOCOM 2005). Proceedings IEEE, 

vol. 3, pp. 2102–2111, 2005. Article (CrossRef Link)  

[3] D. Purandare, R. Guha, “An alliance based peering scheme for peer-to-peer live media streaming,” 

in Proc. of the 2007 workshop on Peer-to-peer streaming and IP-TV, P2P-TV ’07, ACM, pp. 

340-345, 2007. Article (CrossRef Link) 

[4] J. J. D. Mol, A. Bakker, J. Pouwelse, D. H. J. Epema, H. Sips, “The design and deployment of a 

bittorrent live video streaming solution,” in Proc. of the 11th IEEE International Symposium on 

Multimedia (ISM ’09), IEEE Computer Society, pp. 342-349, 2009. Article (CrossRef Link)  

[5] M. Castro, P. Druschel, A. marie Kermarrec, A. Nandi, A. Rowstron, A. Singh, “Splitstream: 

High-bandwidth multicast in a cooperative environment,” In Proc. of the nineteenth ACM 

symposium on Operating systems principles (SOSP’03), vol. 37, no. 5, pp. 298-313, Dec. 2003. 

Article (CrossRef Link)   

[6] P. Team, The ppstream official website (Oct. 2013). URL http://www.ppstream.com/ 

[7] X. Hei, C. Liang, J. Liang, Y. Liu, K. Ross, “A measurement study of a large-scale P2P IPTV 

system,” IEEE Transactions on Multimedia, vol. 9, no. 8, pp. 1672–1687, 2007.  

Article (CrossRef Link) 

[8] S. Banerjee, B. Bhattacharjee, C. Kommareddy, “Scalable application layer multicast,”  in Proc. of 

the 2002 conference on Applications, technologies, architectures, and protocols for computer 

communications (SIGCOMM’02), vol. 32, no. 4, pp. 205-217, October 2002.  

Article (CrossRef Link)   

[9] D. Tran, K. Hua, T. Do, “Zigzag: an efficient peer-to-peer scheme for media streaming,” in Proc. 

of the Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE 

Societies, vol. 2, pp. 1283–1292, 2003. Article (CrossRef Link)  

[10] N. Magharei, R. Rejaie, “Prime: Peer-to-peer receiver-driven mesh-based streaming,” in Proc. of 

the 26th IEEE International Conference on Computer Communications (INFOCOM’ 2007). IEEE, 

pp. 1415–1423, 2007. Article (CrossRef Link)  

[11] S. Xie, B. Li, G. Keung, X. Zhang, “Coolstreaming: Design, theory, and practice,” IEEE 

Transactions on Multimedia, vol. 9, no. 8, pp. 1661–1671, 2007. Article (CrossRef Link) 

[12] Yong Liu, Yang Guo, Chao Liang, “A survey on peer-to-peer video streaming systems,” 

Peer-to-Peer Networking and Applications, vol. 1, no. 1, pp. 18-28, Mar. 2008.  

Article (CrossRef Link) 

[13] A. Payberah, F. Rahimian, S. Haridi, J. Dowling, “Sepidar: Incentivized market-based p2p 

live-streaming on the gradient overlay network,” in Proc. of the IEEE International Symposium on 

Multimedia (ISM’10), pp. 1–8, 2010. Article (CrossRef Link)  

[14] S. M. Y. Seyyedi, B. Akbari, “Hybrid cdn-p2p architectures for live video streaming: Comparative 

study of connected and unconnected meshes”, in Proc. of the International Symposium on 

Computer Networks and Distributed Systems (CNDS), pp. 175–180, 2011. Article (CrossRef Link)  

[15] F. Wang, Y. Xiong, J. Liu, “mtreebone: A hybrid tree/mesh overlay for application-layer live video 

multicast”, in Proceedings of the 27 International Conference on Distributed Computing Systems, 

p. 49, 2007. Article (CrossRef Link)  

[16] Q. Zhu, R.Wang, D. Qian, F. Xiao, “Re-exploring the potential of using tree structure in p2p live 

streaming networks,” in Proc. of the Sixth IFIP International Conference on Network and Parallel 

Computing (NPC ’09), pp. 125–132, 2009. Article (CrossRef Link) 

[17] S. Asaduzzaman, Y. Qiao, G. Bochmann, “Cliquestream: Creating an efficient and resilient 

transport overlay for peer-to-peer live streaming using a clustered DHT,” Peer-to-Peer 

Networking and Applications, vol. 3, no. 2, pp 100–114, Jun. 2010.  Article (CrossRef Link) 

[18] S. Asaduzzaman, Y. Qiao, and G. Bochmann. “CliqueStream: An Efficient and Fault-Resilient 

Live Streaming Network on a Clustered Peer-to-Peer Overlay,” in Proc. of the 2008 Eighth 

International Conference on Peer-to-Peer Computing (P2P '08). IEEE Computer Society, pp 

269-278, 2008. Article (CrossRef Link)   

[19] B. Li, S. Xie, Y. Qu, G. Keung, C. Lin, J. Liu, X. Zhang, “Inside the new coolstreaming: Principles, 

http://dx.doi.org/10.1109/INFCOM.2005.1498486
http://dx.doi.org/10.1145/1326320.1326328
http://dx.doi.org/10.1109/ISM.2009.16
http://dx.doi.org/10.1145/1165389.945474
http://dx.doi.org/10.1109/TMM.2007.907451
http://doi.acm.org/10.1145/964725.633045
http://dx.doi.org/10.1109/INFCOM.2003.1208964
http://dx.doi.org/10.1109/INFCOM.2007.167
http://dx.doi.org/10.1109/TMM.2007.907469
http://dx.doi.org/10.1007/s12083-007-0006-y
http://dx.doi.org/10.1109/ISM.2010.11
http://dx.doi.org/10.1109/CNDS.2011.5764567
http://dx.doi.org/10.1109/ICDCS.2007.122
http://dx.doi.org/10.1109/NPC.2009.18
http://dx.doi.org/10.1007/s12083-009-0052-8
http://dx.doi.org/10.1109/P2P.2008.35


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 9, NO. 3, March 2015                                   1055 

measurements and performance implications,” in Proc of the 27
th

 Conference Of the IEEE 

International Conference on Computer Communications (INFOCOM 2008), pp 1031-1039, 2008. 

Article (CrossRef Link)  

[20] C. Hammami, I. Jemili, A. Gazdar, A. Belghith, M. Mosbah, “Hybrid Live P2P Streaming 

Protocol,” in Proc. of the 5th International Conference on Ambient Systems, Networks and 

Technologies (ANT-2014), Procedia Computer Science. vol. 32, Pages 158–165, 2014.  

Article (CrossRef Link)  

[21] Omnet++ discrete event simulation system [online] (2012). URL http://www.omnetpp.org/ 

[22] Gt-itm topologies for the omnet++ simulation platform and oversim framework [online] (2010). 

URL http://www.cc.gatech.edu/fac/Ellen.Zegura/graphs.html 

[23] Star Wars IV Trace File [Online], 2012, url = 

{http://www-tkn.ee.tu-berlin.de/research/trace/ltvt.html} 

[24] Y. Lu, B. Fallica, F. A. Kuipers, R. E. Kooij, P. V. Mieghem, “Assessing the quality of experience 

of sopcast,” International Journal of Internet Protocol Technology, vol. 4, no. 1, pp. 11–23, 2009. 

Article (CrossRef Link) 

[25] G. Gheorghe, R. Lo Cigno, A. Montresor, “Security and privacy issues in P2P streaming systems: 

A survey,” Peer-to-Peer Networking and Applications, vol. 4, no. 2, pp 75-91, Jun. 2011.  

Article (CrossRef Link) 

[26] H. Yifeng, A. K. Shujjat, “Improving streaming capacity in P2P live streaming systems via 

resource sharing,” Internet of Things and Cloud Computing, vol. 1, no. 2, pp 15-22, 2013.   

Article (CrossRef Link)  

[27] Z. Jianming, Y. Nianmin, C. Shaobin, L. Xiang, “Tree-Mesh Based P2P Streaming Data 

Distribution Scheme,” Knowledge Discovery and Data Mining Advances in Intelligent and Soft 

Computing, vol. 135, pp 77-83, 2012. Article (CrossRef Link) 

[28] NB. Ali, M. Molnar and A. Belghith, “Multi-constrained QoS Multicast Routing Optimization,” 

INRIA Research Report, no. 6500, Apr. 2008. Article (CrossRef Link)  

[29] W. Wu, J. Lui and R. Ma, “On Incentivizing Upload Capacity in P2P-VoD Systems: Design, 

Analysis and Evaluation,” Computer Networks, vol. 57, no. 7, pp. 1674-1688, 2013.  

Article (CrossRef Link)  

[30] L. Mengjuan, L. Fei, L. Xucheng, and Q. Zhiguang, "An ISP-Friendly Hierarchical Overlay for 

P2P Live Streaming", in Proc. of 14-th IEEE International Conference on Peer-to-Peer 

Computing, September 2014. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://dx.doi.org/10.1109/INFOCOM.2008.157
http://www.sciencedirect.com/science/article/pii/S1877050914006103
http://www.sciencedirect.com/science/article/pii/S1877050914006103
http://www.sciencedirect.com/science/article/pii/S1877050914006103
http://www.sciencedirect.com/science/article/pii/S1877050914006103
http://www.sciencedirect.com/science/article/pii/S1877050914006103
http://www.sciencedirect.com/science/journal/18770509
http://www.sciencedirect.com/science/journal/18770509/32/supp/C
http://dx.doi.org/10.1016/j.procs.2014.05.410
http://dx.doi.org/10.1504/IJIPT.2009.024166
http://link.springer.com/search?facet-author=%22Gabriela+Gheorghe%22
http://link.springer.com/search?facet-author=%22Renato+Lo+Cigno%22
http://link.springer.com/search?facet-author=%22Alberto+Montresor%22
http://link.springer.com/journal/12083
http://link.springer.com/journal/12083/4/2/page/1
http://dx.doi.org/10.1007/s12083-010-0070-6
http://dx.doi.org/10.11648/j.iotcc.20130102.11
http://link.springer.com/chapter/10.1007%2F978-3-642-27708-5_11
https://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CDAQFjAA&url=https%3A%2F%2Fhal.inria.fr%2Finria-00271795%2Fdocument&ei=HKvZVJXbL8XzUN7DgtgO&usg=AFQjCNE5rfN_gmBKtFfXMJoojlX_sY2O4g&sig2=6Jchnu9etVbKOLPCiU83ng
http://dx.doi.org/10.1016/j.comnet.2013.02.016


1056                                                                Hammami et al.: HLPSP : A Hybrid Live P2P Streaming Protocol 

Chourouk Hammami is currently pursuing her PhD at the National School of Computer 

Sciences (ENSI), University of Manouba, Tunisia.  

She obtained her bachelor degree in computer science applied to management from the High 

School of Management in Tunis (ISG)  in 2007. She received her Master degree in computer 

science from ENSI in July 2010. Her research interests include computer networks, 

heterogeneous distributed applications and Peer to Peer (P2P) architectures and streaming. 
 

 

 
Dr. Imen Jemili received her M.S. degree in Computer Science in 2002 from the National 

School of Computer Science (ENSI), University of Mannouba, Tunisia. In 2009, she 

received her PhD degree in computer science jointly from the University of Bordeaux 1 

(France) and the University of Mannouba. Her research interests include wireless networks, 

ad hoc and sensor networks, power conservation, synchronization algorithms, routing, QoS 

management, simulation and performance evaluation. She is currently an Assistant 

Professor of Computer Science at the Faculty of sciences of Bizerte, University of Carthage, 

Tunisia.  
 

 
Dr. Achraf Gazdar is currently an Assistant Professor at College of Computer Sciences 

and Information Systems at king Saud University. He received his PhD (2007) and MSc 

(2002) diplomas both in computer science from the National School of Computer Sciences 

(Ecole Nationale des Sciences de l’Informatique), University of Manouba in Tunisia and His 

Bachelor degree in computer science (2000) from the Higher School of Management 

(Institut Supérieur de Gestion), university of Tunis in Tunisia. His research focus on Video 

on Demand (VoD) systems design and architectures, video streaming systems, multimedia 

P2P networks and protocols.  

 

 

Dr. Abdelfettah Belghith received his Master of Science and his PhD degrees in 

computer science from the University of California at Los Angeles (UCLA) respectively in 

1982 and 1987. He is since 1992 a full Professor at the National School of Computer 

Sciences (ENSI), University of Manouba, Tunisia. He is currently on a sabbatical leave at 

King Saud University. His research interests include computer networks, wireless networks, 

multimedia Internet, mobile computing, distributed algorithms, simulation and performance 

evaluation. He runs several research projects in cooperation with other universities, research 

laboratories and research institutions. He is currently the chair of the IEEE Tunisia section, 

the chair of the IEEE ComSoc and VTS Tunisia Chapters, and the Director of the HANA 

Research Laboratory (www.hanalab.org) at the National School of Computer Sciences. He published more than 

250 research papers in international journals and conference proceedings. 

 
Dr. Mohamed Mosbah received his Ph.D. degree from the University of Bordeaux 1, 

France, in 1993. He was an associate professor between 1994 and 2002. He is a full 

professor in computer science since 2003 at Polytechnic Institute of Bordeaux, University of 

Bordeaux, France. His research interests include distributed algorithms and systems, formal 

models, security, and ad hoc and sensor networks. He participated to several national and 

European research projects, including collaborations with industry. He wrote more than 60 

research papers published in international journals and conference proceedings and he is 

involved in various technical program committees and organisations of many international 

conferences. 

http://www.hanalab.org/

