• 제목/요약/키워드: Hybrid methods

검색결과 1,685건 처리시간 0.03초

Comparison of Multi-Label U-Net and Mask R-CNN for panoramic radiograph segmentation to detect periodontitis

  • Rini, Widyaningrum;Ika, Candradewi;Nur Rahman Ahmad Seno, Aji;Rona, Aulianisa
    • Imaging Science in Dentistry
    • /
    • 제52권4호
    • /
    • pp.383-391
    • /
    • 2022
  • Purpose: Periodontitis, the most prevalent chronic inflammatory condition affecting teeth-supporting tissues, is diagnosed and classified through clinical and radiographic examinations. The staging of periodontitis using panoramic radiographs provides information for designing computer-assisted diagnostic systems. Performing image segmentation in periodontitis is required for image processing in diagnostic applications. This study evaluated image segmentation for periodontitis staging based on deep learning approaches. Materials and Methods: Multi-Label U-Net and Mask R-CNN models were compared for image segmentation to detect periodontitis using 100 digital panoramic radiographs. Normal conditions and 4 stages of periodontitis were annotated on these panoramic radiographs. A total of 1100 original and augmented images were then randomly divided into a training (75%) dataset to produce segmentation models and a testing (25%) dataset to determine the evaluation metrics of the segmentation models. Results: The performance of the segmentation models against the radiographic diagnosis of periodontitis conducted by a dentist was described by evaluation metrics(i.e., dice coefficient and intersection-over-union [IoU] score). MultiLabel U-Net achieved a dice coefficient of 0.96 and an IoU score of 0.97. Meanwhile, Mask R-CNN attained a dice coefficient of 0.87 and an IoU score of 0.74. U-Net showed the characteristic of semantic segmentation, and Mask R-CNN performed instance segmentation with accuracy, precision, recall, and F1-score values of 95%, 85.6%, 88.2%, and 86.6%, respectively. Conclusion: Multi-Label U-Net produced superior image segmentation to that of Mask R-CNN. The authors recommend integrating it with other techniques to develop hybrid models for automatic periodontitis detection.

Effectiveness of endodontic retreatment using WaveOne Primary files in reciprocating and rotary motions

  • Patricia Marton Costa;Renata Maira de Souza Leal;Guilherme Hiroshi Yamanari;Bruno Cavalini Cavenago;Marco Antonio Hungaro Duarte
    • Restorative Dentistry and Endodontics
    • /
    • 제48권2호
    • /
    • pp.15.1-15.7
    • /
    • 2023
  • Objectives: This study evaluated the efficiency of WaveOne Primary files (Dentsply Sirona) for removing root canal fillings with 2 types of movement: reciprocating (RCP) and continuous counterclockwise rotation (CCR). Materials and Methods: Twenty mandibular incisors were prepared with a RCP instrument (25.08) and filled using the Tagger hybrid obturation technique. The teeth were retreated with a WaveOne Primary file and randomly allocated to 2 experimental retreatment groups (n = 10) according to movement type: RCP and CCR. The root canals were emptied of filling material in the first 3 steps of insertion, until reaching the working length. The timing of retreatment and procedure errors were recorded for all samples. The specimens were scanned before and after the retreatment procedure with micro-computed tomography to calculate the percentage and volume (mm3) of the residual filling material. The results were statistically evaluated using paired and independent t-tests, with a significance level set at 5%. Results: No significant difference was found in the timing of filling removal between the groups, with a mean of 322 seconds (RCP) and 327 seconds (CCR) (p < 0.05). There were 6 instrument fractures: 1 in a RCP motion file and 5 in continuous rotation files. The volumes of residual filling material were similar (9.94% for RCP and 15.94% for CCR; p > 0.05). Conclusions: The WaveOne Primary files used in retreatment performed similarly in both RCP and CCR movements. Neither movement type completely removed the obturation material, but the RCP movement provided greater safety.

Piezoelectric 6-dimensional accelerometer cross coupling compensation algorithm based on two-stage calibration

  • Dengzhuo Zhang;Min Li;Tongbao Zhu;Lan Qin;Jingcheng Liu;Jun Liu
    • Smart Structures and Systems
    • /
    • 제32권2호
    • /
    • pp.101-109
    • /
    • 2023
  • In order to improve the measurement accuracy of the 6-dimensional accelerometer, the cross coupling compensation method of the accelerometer needs to be studied. In this paper, the non-linear error caused by cross coupling of piezoelectric six-dimensional accelerometer is compensated online. The cross coupling filter is obtained by analyzing the cross coupling principle of a piezoelectric six-dimensional accelerometer. Linear and non-linear fitting methods are designed. A two-level calibration hybrid compensation algorithm is proposed. An experimental prototype of a piezoelectric six-dimensional accelerometer is fabricated. Calibration and test experiments of accelerometer were carried out. The measured results show that the average non-linearity of the proposed algorithm is 2.2628% lower than that of the least square method, the solution time is 0.019382 seconds, and the proposed algorithm can realize the real-time measurement in six dimensions while improving the measurement accuracy. The proposed algorithm combines real-time and high precision. The research results provide theoretical and technical support for the calibration method and online compensation technology of the 6-dimensional accelerometer.

주택용 연료전지 효율 향상을 위한 다중 스택 연료전지 시스템의 전력 분배 최적화 (Power Distribution Optimization of Multi-stack Fuel Cell Systems for Improving the Efficiency of Residential Fuel Cell)

  • 강태성;함성현;오환영;최윤영;김민진
    • 한국수소및신에너지학회논문집
    • /
    • 제34권4호
    • /
    • pp.358-368
    • /
    • 2023
  • The fuel cell market is expected to grow rapidly. Therefore, it is necessary to scale up fuel cells for buildings, power generation, and ships. A multi-stack system can be an effective way to expand the capacity of a fuel cell. Multi-stack fuel cell systems are better than single-stack systems in terms of efficiency, reliability, durability and maintenance. In this research, we developed a residential fuel cell stack and system model that generates electricity using the fuel cell-photovoltaic hybrid system. The efficiency and hydrogen consumption of the fuel cell system were calculated according to the three proposed power distribution methods (equivalent, Daisy-chain, and optimal method). As a result, the optimal power distribution method increases the efficiency of the fuel cell system and reduces hydrogen consumption. The more frequently the multi-stack fuel cell system is exposed to lower power levels, the greater the effectiveness of the optimal power distribution method.

Determination of the stage and grade of periodontitis according to the current classification of periodontal and peri-implant diseases and conditions (2018) using machine learning algorithms

  • Kubra Ertas;Ihsan Pence;Melike Siseci Cesmeli;Zuhal Yetkin Ay
    • Journal of Periodontal and Implant Science
    • /
    • 제53권1호
    • /
    • pp.38-53
    • /
    • 2023
  • Purpose: The current Classification of Periodontal and Peri-Implant Diseases and Conditions, published and disseminated in 2018, involves some difficulties and causes diagnostic conflicts due to its criteria, especially for inexperienced clinicians. The aim of this study was to design a decision system based on machine learning algorithms by using clinical measurements and radiographic images in order to determine and facilitate the staging and grading of periodontitis. Methods: In the first part of this study, machine learning models were created using the Python programming language based on clinical data from 144 individuals who presented to the Department of Periodontology, Faculty of Dentistry, Süleyman Demirel University. In the second part, panoramic radiographic images were processed and classification was carried out with deep learning algorithms. Results: Using clinical data, the accuracy of staging with the tree algorithm reached 97.2%, while the random forest and k-nearest neighbor algorithms reached 98.6% accuracy. The best staging accuracy for processing panoramic radiographic images was provided by a hybrid network model algorithm combining the proposed ResNet50 architecture and the support vector machine algorithm. For this, the images were preprocessed, and high success was obtained, with a classification accuracy of 88.2% for staging. However, in general, it was observed that the radiographic images provided a low level of success, in terms of accuracy, for modeling the grading of periodontitis. Conclusions: The machine learning-based decision system presented herein can facilitate periodontal diagnoses despite its current limitations. Further studies are planned to optimize the algorithm and improve the results.

수소주거모델의 전력 거래 참여 방안 고찰 (A Study on Power Trading Methods for in a Hydrogen Residential Model )

  • 정기석;정태영
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.91-99
    • /
    • 2023
  • Participation in power trading using surplus power is considered a business model active in the domestic energy trade market, but it is limited only if the legal requirements according to the type, capacity, and use of the facilities to be applied for are satisfied. The hydrogen residential demonstration model presented in this paper includes solar power, energy storage system (ESS), fuel cell, and water electrolysis facilities in electrical facilities for private use with low-voltage power receiving system. The concept of operations strategy for this model focuses on securing the energy self-sufficiency ratio of the entire system, securing economic feasibility through the optimal operation module installed in the energy management system (EMS), and securing the stability of the internal power balancing issue during the stand-alone mode. An electric facility configuration method of a hydrogen residential complex demonstrated to achieve this operational goal has a structure in which individual energy sources are electrically connected to the main bus, and ESS is also directly connected to the main bus instead of a renewable connection type to perform charging/discharging operation for energy balancing management in the complex. If surplus power exists after scheduling, participation in power trading through reverse transmission parallel operation can be considered to solve the energy balancing problem and ensure profitability. Consequentially, this paper reviews the legal regulations on participation in electric power trading using surplus power from hydrogen residential models that can produce and consume power, gas, and thermal energy including hybrid distributed power sources, and suggests action plans.

Calculation of thermal neutron scattering data of MgF2 and its effect on beam shaping assembly for BNCT

  • Jiaqi Hu;Zhaopeng Qiao;Lunhe Fan;Yongqiang Tang;Liangzhi Cao;Tiejun Zu;Qingming He;Zhifeng Li;Sheng Wang
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1280-1286
    • /
    • 2023
  • MgF2 as a moderator material has been extensively used in the beam shaping assembly (BSA) that plays an important role in the boron neutron capture therapy (BNCT). Regarded as important for applications, the thermal neutron scattering data of MgF2 were calculated, based on the phonon expansion model. The structural properties of MgF2 were researched by the VASP code based on the ab-initio methods. The PHONOPY code was employed to calculate the phonon density of states. Furthermore, the NJOY code was used to calculate the thermal neutron scattering data of MgF2. The calculated inelastic cross sections plus absorption cross sections are in agreement with the available experimental data. The neutron transport in the BSA has been simulated by using a hybrid Monte-Carlo-Deterministic code NECP-MCX. The results indicated that compared with the calculation of the free gas model, the thermal neutron flux and epithermal neutron flux at the BSA exit port calculated by using the thermal neutron scattering data of MgF2 were reduced by 27.7% and 8.2%, respectively.

원심팬 시스템의 공력소음 고신뢰 예측을 위한 수치 비교 연구 (Numerical comparative study on high-fidelity prediction of aerodynamic noise from centrifugal fan system)

  • 유서윤;정민승;송영욱;정철웅
    • 한국음향학회지
    • /
    • 제41권6호
    • /
    • pp.713-722
    • /
    • 2022
  • 본 연구에서는 대상 원심팬 시스템에서 발생하는 유동 현상과 공력 음향 성능을 수치적/실험적으로 분석하고 다양한 수치 기법을 비교하여 평가하고자 하였다. 먼저 원심팬의 성능을 실험적으로 분석하기 위해 반무향실에서 음향 파워를 측정하였으며, 실험 결과를 통해 대상 원심팬 시스템에서 방사되는 소음 성능에 대한 유효 주파수 범위를 파악하고 이에 대한 수치 모사를 실시하였다. 수치적으로 유동 및 음향 파워를 분석하기 위해 Navier-Stokes 방정식과 Ffowcs Williams&Hawkings 방정식을 각각 유동장과 음향장의 지배방정식으로 사용하였으며, 음향장의 구현을 위해 가상의 음향 방사면을 설계하여 사용하였다. 고차 3차원 전산유체역학(Computational Fluid Dynamics, CFD)와 연계된 Hybrid-CAA 기법을 사용하여 모사한 음향 파워 레벨과 소음 실험을 통해 측정한 음향 파워 레벨의 비교를 통해 사용된 수치 기법의 정확도 및 수치적 특성을 평가하였다.

드럼 세트 연주 시 그립이 연주에 미치는 복합적 영향 분석 (Analysis of the complex effect of grip on performance when playing a drum set.)

  • 한호석;조태선
    • 디지털융복합연구
    • /
    • 제20권3호
    • /
    • pp.349-357
    • /
    • 2022
  • 드럼은 현대 대중음악에서 그립을 활용하는 대표적인 악기이다. 기본 그립을 어떠한 방식으로, 얼마나 확실하게 잡는지에 따라 연주 능력에 영향을 주기도 한다. 본 연구의 목적은 각 그립의 특징과 장, 단점을 분석하고 그에 따른 복합적 영향을 도출해 연주자들에게 실질적인 활용방안을 제시하고자 하는 것이다. 연구 방법은 크게 트래디셔널 그립과 매치드 그립으로 나누고 세부적으로 저먼, 아메리칸, 프렌치 스타일과 하이브리드 스타일을 포함해 활용한 연주 방법에 대해 분석한다. 또한 해외 전문 드럼 사이트인 드러머 월드에 등재된 1930년대부터 현재까지 모든 드러머의 그립 방법을 참고한다. 본 연구는 드럼 세트에서 가장 기본 시 되는 그립 방법을 세부적으로 분류하고 분석하여 여러 활용방안을 제시했다. 그립에 따라 연주적 영향이 다른 것을 알 수 있었으며 각 그립의 순기능과 역기능을 모두 이해하고 연주를 한다면 앞으로의 연주에 한층 더 도움이 될 것이다.

웨어러블 응용을 위한 섬유형 슈퍼커패시터 (Fiber Based Supercapacitors for Wearable Application )

  • 이재명;손원경;김주완;노준호;오명은;최진형;최창순
    • 한국전기전자재료학회논문지
    • /
    • 제36권4호
    • /
    • pp.303-325
    • /
    • 2023
  • Flexible fiber- or yarn-based one-dimensional (1-D) energy storage devices are essential for developing wearable electronics and have thus attracted considerable attention in various fields including ubiquitous healthcare (U-healthcare) systems and textile platforms. 1-D supercapacitors (SCs), in particular, are recognized as one of the most promising candidates to power wearable electronics due to their unique energy storage and high adaptability for the human body. They can be woven into textiles or effectively designed into diverse architectures for practical use in day-to-day life. This review summarizes recent important development and advances in fiber-based supercapacitors, concerning the active materials, fiber configuration, and applications. Active materials intended to enhance energy storage capability including carbon nanomaterials, metal oxides, and conductive polymers, are first discussed. With their loading methods for fiber electrodes, a summary of the four main types of fiber SCs (e.g., coil, supercoil, buckle, and hybrid structures) is then provided, followed by demonstrations of some practical applications including wearability and power supplies. Finally, the current challenges and perspectives in this field are made for future works.