• Title/Summary/Keyword: Hybrid machining

Search Result 110, Processing Time 0.023 seconds

Hybrid Technology using 3D Printing and 5-axis Machining for Development of Prototype of the Eccentric Drive System (편심구동장치 시제품 개발을 위한 3D프린팅-5축가공 복합기술)

  • Hwang, Jong-Dae;Yang, Jun-Seok;Yun, Sung-Hwan;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.2
    • /
    • pp.38-45
    • /
    • 2016
  • Since a 5-axis machine tool has two rotary axes, it offers numerous advantages, such as flexible accessibility, longer tool life, better surface finish, and more accuracy. Moreover, it can conduct whole machining by rotating the rotary feed axes while setting the fixture at once without re-fixing in contrast to conventional 3-axis machining. However, it is difficult to produce complicated products that have a hollow shape. In contrast, 3D printing can produce an object with a complicated hollow shape easily and rapidly. However, because of layer thickness and shrinkage, its surface finish and dimensional accuracy are not adequate. Therefore, this study proposes hybrid technology by integrating the advantages of these two manufacturing processes. 3D printing was used as the additive manufacturing rapidly in the whole body, and 5-axis machining was used as the subtractive manufacturing accurately in the joining and driving places. The reliability of the proposed technology was verified through a comparison with conventional technology in the aspects of processing time, surface roughness. and dimensional accuracy.

Characteristics of Micro EDM using Wire Electrical Discharge Grinding for Al2O3/CNTs Hybrid Materials (Al2O3/CNTs 하이브리드소재의 와이어 방전연삭을 이용한 마이크로 방전가공 특성)

  • Tak, Hyun-Seok;Kim, Jong-Hun;Lim, Han-Suk;Lee, Choon-Tae;Jeong, Young-Keun;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • Electrical discharge machining (EDM) is an attractive machining technique but it requires electrically conductive ceramic materials. In this study, Alumina matrix composites reinforced with CNTs were fabricated through CNT purification, mixing, compaction and spark plasma sintering (SPS) processes. $Al_2O_3$ nanocomposites with the different CNT concentrations were synthesized. The mechanical and electrical characteristics of $Al_2O_3$/CNTs composites were examined in order to apply the materials to the EDM process. In addition, micro-EDM using wire electrical discharge grinding (WEDG) was conducted under the various EDM parameters to investigate the machining characteristics of machined hole by Field Emission Scanning Electron Microscope (FE-SEM). The results show that $Al_2O_3$/CNTs 10%Vol. was more suitable than the other materials because high conductivity and large discharge energy caused violent sparks resulting in bad machining accuracy and surface quality.

Application and Parameter Optimization of EP-MAP Hybrid Machining for Micro Pattern Deburring (미세 패턴의 디버링을 위한 전해-자기연마 복합가공의 적용과 공정 최적화에 관한 연구)

  • Lee, Sung-Ho;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.2
    • /
    • pp.114-120
    • /
    • 2013
  • An EP(Electrolytic Polishing)-MAP(Magnetic Abrasive Polishing) hybrid process was applied to remove burr on the micro pattern. Micro pattern fabrication processes are combined with micro milling and EP-MAP hybrid process for deburring. Depending on the micro milling conditions which are applied, micro burrs are formed around the side and top of the pattern. The EP-MAP deburring is used to remove these burrs effectively. To optimize removal rate and form error in the EP-MAP hybrid process, a design of experiment was performed. The effect of deburring process and form error of micro pattern are evaluated via SEM images and the results of AFM.

Shape Optimization for Lightweight of the Metal 3D Printing Based Hybrid Machining Center (금속 적층 기반 하이브리드 머시닝센터의 경량화를 위한 형상 최적화에 관한 연구)

  • Jeong, Won-Young;Jeong, Ho-In;Lee, Choon-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.80-85
    • /
    • 2021
  • In the fourth industrial revolution, the demand for metal three-dimensional (3D) printing technology is rapidly increasing. Metal 3D printing is an efficient method for manufacturing products because the method reduces material waste compared to subtractive manufacturing. In addition, products with complex shapes, such as turbine blades, can be easily produced using metal 3D printing because the method offers a high degree of freedom. However, due to the long production time of metal 3D printing, mass production is impossible, and post-processing is necessary due to its low precision. Therefore, it is necessary to develop a new hybrid process that can efficiently process metals and to develop a metal 3D-printing-based hybrid processing system technology to secure high processing precision and manufacture complex shapes. In this study, the structural stability of a metal 3D printer based hybrid machining center was analyzed through structural analysis before its development. In addition, we proposed a design modification that can reduce the weight and increase the stiffness of the hybrid machining center by performing shape lightning based on the structural analysis results.

A Study on Manufacturing Method of Nano-Micro Hybrid Pattern Using Indentation Machining Method and AAO Process (누름가공과 AAO 공정을 이용한 나노-마이크로 복합패턴 제작방법 연구)

  • Kim, Han-Hee;Jeon, Eun-Chae;Choi, Dae-Hee;Jang, Woong-Ki;Park, Yong-Min;Je, Tae-Jin;Choi, Doo-Sun;Kim, Byeong-Hee;Seo, Young-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.63-68
    • /
    • 2015
  • Micro/nano patterns for optical concentration and diffusion have been studied in the various fields such as displays, optics, and sensors. Conventional micro patterns were continuous and linear shapes due to using linear-type light sources, however, recently non-continuous patterns have been applied as point sources are used for dot-type light sources such as LEDs and OLEDs. In this study, a hybrid machining technology combining an indentation machining method and an AAO process was developed for manufacturing the non-continuous micro patterns having nano patterns. First, mirror-like surfaces ($R_a<20nm$) of pure Aluminum substrates were obtained by optimizing cutting conditions. Then, The letter of 'K' consisting of the arrays of the micro patterns was manufactured by the indentation machining method which has a similar principle to indentation hardness testing. Finally, nano patterns were machined by AAO process on the micro patterns. Conclusively, a specific letter having nano-micro hybrid patterns was manufactured in this study.

Fabrication of Nano Composites Using Hybrid Rapid Prototyping (하이브리드 쾌속 조형을 이용한 나노 복합재의 조형)

  • Chu W.S.;Kim S.G.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.757-760
    • /
    • 2005
  • The technology of rapid prototyping (RP) is used for design verification, function test and fabrication of prototype. The current issues in RP are improvement in accuracy and application of various materials. In this paper, a hybrid rapid prototyping system is introduced which can fabricate nano composites using various materials. This hybrid system adopts RP and machining process, so material deposition and removal is performed at the same time in a single station. As examples, micro gears and a composite scaffold were fabricated using photo cured polymer with nano powders such as carbon black and hydroxyapatite. From the micro gear samples the hybrid RP technology showed higher precision than those made by casting or deposition process.

  • PDF

A Study on Design of High Luminance Hybrid LED Package and Ultra-fine Machining of Optical Pattern (고효율 Hybrid LED 패키지 설계 및 초정밀 광학패턴 가공에 관한 연구)

  • Jeon, E.C.;Je, T.J.;Whang, K.H.
    • Transactions of Materials Processing
    • /
    • v.19 no.8
    • /
    • pp.474-479
    • /
    • 2010
  • Newly suggested hybrid LED package can reduce the number of LED processes and enhance light efficacy in virtue of its integrated optical patterns. Square-type pyramid pattern was chosen for the integrated optical pattern in this study, and it was proved that the pattern enhances illuminance about three times and luminance about two and half times by optical simulation. Square-type pyramid patterns of 0.02mm height and 0.04mm pitch were successively machined on a copper mold which is necessary for imprinting the integrated pattern. Hybrid LED package with integrated optical pattern will be manufactured with ultra-fine machined mold in future study.

Hybrid Type II fuzzy system & data mining approach for surface finish

  • Tseng, Tzu-Liang (Bill);Jiang, Fuhua;Kwon, Yongjin (James)
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.137-147
    • /
    • 2015
  • In this study, a new methodology in predicting a system output has been investigated by applying a data mining technique and a hybrid type II fuzzy system in CNC turning operations. The purpose was to generate a supplemental control function under the dynamic machining environment, where unforeseeable changes may occur frequently. Two different types of membership functions were developed for the fuzzy logic systems and also by combining the two types, a hybrid system was generated. Genetic algorithm was used for fuzzy adaptation in the control system. Fuzzy rules are automatically modified in the process of genetic algorithm training. The computational results showed that the hybrid system with a genetic adaptation generated a far better accuracy. The hybrid fuzzy system with genetic algorithm training demonstrated more effective prediction capability and a strong potential for the implementation into existing control functions.

Layer Generation for Hybrid Rapid Prototyping System Using Machining and Deposition (절삭과 적층을 복합적으로 수행하는 하이브리드방식 쾌속시작시스템을 위한 층분할)

  • Lee K.W.;Kang J.G.;Zhu H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.421-431
    • /
    • 2005
  • This paper introduces a new approach for saving build time of hybrid rapid prototyping by decomposing a part into minimum number of layers. In the hybrid rapid prototyping, a part of a complicated shape is realized by adding layers of a simpler shape, each of which is obtained by machining a sheet of constant thickness from its top and bottom surfaces. Thus it is desired to decompose a given part into the minimum number of layers while guaranteeing each layer to be fabricated from the given sheets using a 3-axis milling machine. To satisfy these requirements, a concave edge-based algorithm is proposed to decompose a part into layers by considering the tool accessibility, the total number of layers, and the allowable sheet thickness.