• 제목/요약/키워드: Hybrid learning method

검색결과 261건 처리시간 0.022초

적외선영상내 전력선 검출을 위한 하이브리드 방법 (A Hybrid Method for Recognizing Existence of Power Lines in Infrared Images)

  • 김종희;정찬호
    • 전기전자학회논문지
    • /
    • 제26권4호
    • /
    • pp.742-745
    • /
    • 2022
  • 본 논문에서 우리는 열화상에서 전력선 유무를 검출하는 영상처리 기법과 딥러닝 기반의 하이브리드 방법을 제안한다. 딥러닝은 다수의 데이터로부터 목적에 부합하는 특징 벡터를 학습할 수 있는 장점 덕분에 영상 인식, 객체 검출 등 다양한 분야에서 기존의 직접 설계한 특징 벡터를 사용하는 방법들보다 높은 성능을 달성할 수 있는 장점이 있고, 영상처리 기법은 사람의 직관을 그대로 적용할 수 있다는 장점이 있다. 두 장점을 모두 이용하여 열화상에서 전력선 유무를 검출하는 방법을 제안한다. 전력선 유무 검출에 가장 적합한 영상처리 기법을 찾기 위해 총 5가지 방법을 적용 및 비교하였고, 그 결과로 제안하는 방법은 기존의 영상처리 기반 방법과 딥러닝 기반의 방법 두 가지 모두에 비해 더 높은 99.48%의 정확도로 전력선 유무를 검출할 수 있다.

한국어 구 단위화를 위한 규칙 기반 방법과 기억 기반 학습의 결합 (A Hybrid of Rule based Method and Memory based Loaming for Korean Text Chunking)

  • 박성배;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.369-378
    • /
    • 2004
  • 한국어나 일본어와 같이 부분 어순 자유 언어에서는 규칙 기반 방법이 구 단위화에 있어서 매우 유용한 방법이며, 실제로 잘 발달된 조사와 어미를 활용하면 소수의 규칙만으로도 여러 가지 기계학습 기법들만큼 높은 성능을 보일 수 있다. 하지만, 이 방법은 규칙의 예외를 처리할 수 있는 방법이 없다는 단점이 있다. 예외 처리는 자연언어처리에서 매우 중요한 문제이며, 기억 기반 학습이 이 문제를 효과적으로 다룰 수 있다. 본 논문에서는, 한국어 단위화를 위해서 규칙 기반 방법과 기억 기반 학습을 결합하는 방법을 제시한다. 제시된 방법은 우선 규칙에 기초하고, 규칙으로 추정한 단위를 기억 기반 학습으로 검증한다. STEP 2000 말뭉치에 대한 실험 결과, 본 논문에서 제시한 방법이 규칙이나 여러 기계학습 기법을 단독으로 사용하였을 때보다 높은 성능을 보였다. 규칙과 구 단위화에 가장 좋은 성능을 보인 Support Vector Machines의 F-score가 각각 91.87과 92.54인데 비하여, 본 논문에서 제시된 방법의 최종 F-score 는 94.19이다.

변형하이브리드 학습규칙의 구현에 관한 연구 (A Study on the Implementation of Modified Hybrid Learning Rule)

  • 송도선;김석동;이행세
    • 전자공학회논문지B
    • /
    • 제31B권12호
    • /
    • pp.116-123
    • /
    • 1994
  • A modified Hybrid learning rule(MHLR) is proposed, which is derived from combining the Back Propagation algorithm that is known as an excellent classifier with modified Hebbian by changing the orginal Hebbian which is a good feature extractor. The network architecture of MHLR is multi-layered neural network. The weights of MHLR are calculated from sum of the weight of BP and the weight of modified Hebbian between input layer and higgen layer and from the weight of BP between gidden layer and output layer. To evaluate the performance, BP, MHLR and the proposed Hybrid learning rule (HLR) are simulated by Monte Carlo method. As the result, MHLR is the best in recognition rate and HLR is the second. In learning speed, HLR and MHLR are much the same, while BP is relatively slow.

  • PDF

A Study on Improving the predict accuracy rate of Hybrid Model Technique Using Error Pattern Modeling : Using Logistic Regression and Discriminant Analysis

  • Cho, Yong-Jun;Hur, Joon
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.269-278
    • /
    • 2006
  • This paper presents the new hybrid data mining technique using error pattern, modeling of improving classification accuracy. The proposed method improves classification accuracy by combining two different supervised learning methods. The main algorithm generates error pattern modeling between the two supervised learning methods(ex: Neural Networks, Decision Tree, Logistic Regression and so on.) The Proposed modeling method has been applied to the simulation of 10,000 data sets generated by Normal and exponential random distribution. The simulation results show that the performance of proposed method is superior to the existing methods like Logistic regression and Discriminant analysis.

  • PDF

기분석사전과 기계학습 방법을 결합한 음절 단위 한국어 품사 태깅 (Syllable-based Korean POS Tagging Based on Combining a Pre-analyzed Dictionary with Machine Learning)

  • 이충희;임준호;임수종;김현기
    • 정보과학회 논문지
    • /
    • 제43권3호
    • /
    • pp.362-369
    • /
    • 2016
  • 본 논문은 음절 단위 한국어 품사 태깅 방법의 성능 개선을 위해 기분석사전과 기계학습 방법을 결합하는 방법을 제안한다. 음절 단위 품사 태깅 방법은 형태소분석을 수행하지 않고 품사 태깅만을 수행하는 방법이며, 순차적 레이블링(Sequence Labeling) 문제로 형태소 태깅 문제를 접근한다. 본 논문에서는 순차적 레이블링 기반 음절 단위 품사 태깅 방법의 전처리 단계로 품사 태깅말뭉치와 국어사전으로부터 구축된 복합명사 기분석사전과 약 1천만 어절의 세종 품사 태깅말뭉치로부터 자동 추출된 어절 사전을 적용함으로써 품사 태깅 성능을 개선시킨다. 성능 평가를 위해서 약 74만 어절의 세종 품사 태깅말 뭉치로부터 67만 어절을 학습 데이터로 사용하고 나머지 7만 4천 어절을 평가셋으로 사용하였다. 기계학습 방법만을 사용한 경우에 96.4%의 어절 정확도를 보였으며, 기분석사전을 결합한 경우에는 99.03%의 어절 정확도를 보여서 2.6%의 성능 개선을 달성하였다. 퀴즈 분야의 평가셋으로 실험한 경우에도 기계학습 엔진은 96.14% 성능을 보인 반면, 하이브리드 엔진은 97.24% 성능을 보여서 제안 방법이 다른 분야에도 효과적임을 확인하였다.

Hybrid Fuzzy Learning Controller for an Unstable Nonlinear System

  • Chung, Byeong-Mook;Lee, Jae-Won;Joo, Hae-Ho;Lim, Yoon-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제1권1호
    • /
    • pp.79-83
    • /
    • 2000
  • Although it is well known that fuzzy learning controller is powerful for nonlinear systems, it is very difficult to apply a learning method if they are unstable. An unstable system diverges for impulse input. This divergence makes it difficult to learn the rules unless we can find the initial rules to make the system table prior to learning. Therefore, we introduced LQR(Linear Quadratic Regulator) technique to stabilize the system. It is a state feedback control to move unstable poles of a linear system to stable ones. But, if the system is nonlinear or complicated to get a liner model, we cannot expect good results with only LQR. In this paper, we propose that the LQR law is derived from a roughly approximated linear model, and next the fuzzy controller is tuned by the adaptive on-line learning with the real nonlinear plant. This hybrid controller of LQR and fuzzy learning was superior to the LQR of a linearized model in unstable nonlinear systems.

  • PDF

보상신호를 수반하는 가상로봇의 학습행위 연구 (Learning Behavior of Virtual Robot using Compensation Signal)

  • 황수철
    • 전자공학회논문지 IE
    • /
    • 제44권3호
    • /
    • pp.35-41
    • /
    • 2007
  • 본 논문에서는 보상신호를 수반하는 인공지능 기반의 가상 로봇 학습 행위 모델을 제안하고 이 모델을 3가지 환경에 적용시킨 후에 보상 방법에 따른 가상 로봇의 학습 속도를 비교 검토하였다. 결과로서 환경이 다소 복잡하면 즉, 로봇 집단의 크기, 먹이 수, 장애물 수가 다소 많은 경우 학습 세대가 충분하다면 강화 보상 방법이 강화와 억제를 혼합한 보상 방법 보다 우월함을 알 수 있었다. 하지만 복잡하지 않은 환경에서는 혼합 보상 방법이 우수했다.

하이브리드법에 의한 HMM-Net 분류기의 학습 (On Learning of HMM-Net Classifiers Using Hybrid Methods)

  • 김상운;신성효
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.1273-1276
    • /
    • 1998
  • The HMM-Net is an architecture for a neural network that implements a hidden Markov model (HMM). The architecture is developed for the purpose of combining the discriminant power of neural networks with the time-domain modeling capability of HMMs. Criteria used for learning HMM-Net classifiers are maximum likelihood (ML), maximum mutual information (MMI), and minimization of mean squared error(MMSE). In this paper we propose an efficient learning method of HMM-Net classifiers using hybrid criteria, ML/MMSE and MMI/MMSE, and report the results of an experimental study comparing the performance of HMM-Net classifiers trained by the gradient descent algorithm with the above criteria. Experimental results for the isolated numeric digits from /0/ to /9/ show that the performance of the proposed method is better than the others in the respects of learning and recognition rates.

  • PDF

VR기반 드론 실감형 콘텐츠 개발 및 체험효과에 관한 연구 (A Study on the VR-based Drone Immersive Content Development and Experience Effect)

  • 이인철
    • 한국산업융합학회 논문집
    • /
    • 제25권4_2호
    • /
    • pp.663-671
    • /
    • 2022
  • Practice through virtual reality can increase the educational effect regardless of time and place, and it is an educational method that is being pursued even in the situation of COVID-19. On the other hand, for VR-based education, related technology development and content development must be made, and experiential methods (flipped learning, blended learning, hybrid learning) must be provided in the educational process. The development scenario was developed with the contents of drone qualification test (ultra-light unmanned multicopter) and drone practice and the possibility of non-face-to-face self-directed learning (flipped learning, blended learning, hybrid learning). It is expected that the quality of vocational education related to drones and the effect of high education will be improved through the contents, and it is thought that it will be possible to suggest a direction for the development of various vocational education contents in non-face-to-face education.

Machine Learning Based Hybrid Approach to Detect Intrusion in Cyber Communication

  • Neha Pathak;Bobby Sharma
    • International Journal of Computer Science & Network Security
    • /
    • 제23권11호
    • /
    • pp.190-194
    • /
    • 2023
  • By looking the importance of communication, data delivery and access in various sectors including governmental, business and individual for any kind of data, it becomes mandatory to identify faults and flaws during cyber communication. To protect personal, governmental and business data from being misused from numerous advanced attacks, there is the need of cyber security. The information security provides massive protection to both the host machine as well as network. The learning methods are used for analyzing as well as preventing various attacks. Machine learning is one of the branch of Artificial Intelligence that plays a potential learning techniques to detect the cyber-attacks. In the proposed methodology, the Decision Tree (DT) which is also a kind of supervised learning model, is combined with the different cross-validation method to determine the accuracy and the execution time to identify the cyber-attacks from a very recent dataset of different network attack activities of network traffic in the UNSW-NB15 dataset. It is a hybrid method in which different types of attributes including Gini Index and Entropy of DT model has been implemented separately to identify the most accurate procedure to detect intrusion with respect to the execution time. The different DT methodologies including DT using Gini Index, DT using train-split method and DT using information entropy along with their respective subdivision such as using K-Fold validation, using Stratified K-Fold validation are implemented.