• 제목/요약/키워드: Hybrid learning

검색결과 566건 처리시간 0.034초

Damage identification in suspension bridges under earthquake excitation using practical advanced analysis and hybrid machine-learning models

  • Van-Thanh Pham;Duc-Kien Thai;Seung-Eock Kim
    • Steel and Composite Structures
    • /
    • 제52권6호
    • /
    • pp.695-711
    • /
    • 2024
  • Suspension bridges are critical to urban transportation, but those in earthquake-prone areas face unique challenges. In the event of a moderate or strong earthquake, conventional linear theory-based approaches for detecting bridge damage become inadequate. This study presents an efficient method for identifying damage in suspension bridges using time history nonlinear inelastic analysis. A practical advanced analysis program is employed to model cable-supported bridges with low computational cost, generating a dataset for four hybrid models: PSO-DT, PSO-RF, PSO-XGB, and PSO-CGB. These models combine decision tree (DT), random forest (RF), extreme gradient boosting (XGB), and categorical gradient boosting (CGB) with particle swarm optimization (PSO) to capture nonlinear correlations between displacement response and damage. Principal component analysis reduces dataset dimensions, and PSO selects the optimal model. A numerical case study of a suspension bridge under simulated earthquake conditions identifies PSO-XGB as the best model for predicting stiffness reduction. The results demonstrate the method's robustness for nonlinear damage detection in suspension bridges under earthquake excitation.

하이브리드 데이터마이닝을 이용한 지능형 이상 진단 시스템 (Intelligent Fault Diagnosis System Using Hybrid Data Mining)

  • 백준걸;허준
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2005년도 춘계공동학술대회 발표논문
    • /
    • pp.960-968
    • /
    • 2005
  • The high cost in maintaining complex manufacturing process makes it necessary to enhance an efficient maintenance system. For the effective maintenance of manufacturing process, precise fault diagnosis should be performed and an appropriate maintenance action should be executed. This paper suggests an intelligent fault diagnosis system using hybrid data mining. In this system, the rules for the fault diagnosis are generated by hybrid decision tree/genetic algorithm and the most effective maintenance action is selected by decision network and AHP. To verify the proposed intelligent fault diagnosis system, we compared the accuracy of the hybrid decision tree/genetic algorithm with one of the general decision tree learning algorithm(C4.5) by data collected from a coil-spring manufacturing process.

  • PDF

A Novel Image Classification Method for Content-based Image Retrieval via a Hybrid Genetic Algorithm and Support Vector Machine Approach

  • Seo, Kwang-Kyu
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.75-81
    • /
    • 2011
  • This paper presents a novel method for image classification based on a hybrid genetic algorithm (GA) and support vector machine (SVM) approach which can significantly improve the classification performance for content-based image retrieval (CBIR). Though SVM has been widely applied to CBIR, it has some problems such as the kernel parameters setting and feature subset selection of SVM which impact the classification accuracy in the learning process. This study aims at simultaneously optimizing the parameters of SVM and feature subset without degrading the classification accuracy of SVM using GA for CBIR. Using the hybrid GA and SVM model, we can classify more images in the database effectively. Experiments were carried out on a large-size database of images and experiment results show that the classification accuracy of conventional SVM may be improved significantly by using the proposed model. We also found that the proposed model outperformed all the other models such as neural network and typical SVM models.

HRD 관점에서 기업의 스마트 러닝 성공을 위한 탐색적 연구 (An Exploratory Study on Organizational Smart Learning Success from an HRD Perspective)

  • 오예슬;안재영;윤혜정
    • 지식경영연구
    • /
    • 제24권4호
    • /
    • pp.219-235
    • /
    • 2023
  • 디지털 기술의 발전과 코로나19의 영향으로 기업의 혁신과 조직문화가 변화하고 있으며, HRD(Human Resource Development) 분야에서 스마트 러닝의 중요성이 부각되고 있다. 본 연구에서는 HRD 담당자의 관점에서 스마트 러닝을 구성하는 요인들의 상대적인 중요성을 밝히는 것을 목적으로 하였다. 선행 문헌 검토를 통해 현 상황에 가장 부합하는 스마트 러닝 계층 및 요인을 도출하고, AHP 방법을 활용하여 해당 요인의 상대적 중요도를 파악하였다. 결과적으로 1계층 요인에서는 '학습 활동', '교육 활동', '학습 콘텐츠', '평가 방법 및 평가', '학습 시간 및 공간' 순으로 중요도가 확인 되었다. 2계층 전체 요인에서는 '교육 전략', '학습 결과', '학습 과업', '학습 목표', '학습 지원'이 상위 5위에 나타나는 요인으로 확인되었다. 본 연구 결과는 스마트 러닝 개념을 재정립하고, 추후 연구를 위한 학술적 프레임워크를 제안한 점에서 의의를 가진다. 또한, 실무적으로는 HRD 담당자들이 스마트 러닝을 개선하고 향상시키기 위해 어떤 요인에 주력해야 하는지에 대한 유용한 정보를 제공하는데 기여할 것으로 기대된다.

자기조직화 교사 학습에 의한 패턴인식에 관한 연구 (A Study on Pattern Recognition with Self-Organized Supervised Learning)

  • 박찬호
    • 정보학연구
    • /
    • 제5권2호
    • /
    • pp.17-26
    • /
    • 2002
  • 본 연구에서는 자기조직화 교사학습 신경망인 SOSL(Self-Organized Superised Learning)과 이 신경망의 구조를 제안한다. SOSL신경망은 하이브리드 형태의 신경망으로써 다수 개의 컴포넌트 에러 역전파 신경망들과 수정된 PCA신경망으로 구성된다. CBP신경망은 군집화되고 복잡한 입력패턴에 대하여 교사학습을 병렬적으로 수행한다. 수정된 PCA신경망은 군집화 및 지역투영에 의하여 원 입력패턴을 보다 작은 차원으로 변환시키기 위하여 사용된다. 제안된 SOSL은 많은 입력패턴을 가짐으로써 큰 네트워크 크기를 가지게 되는 신경망에 효과적으로 적용이 가능하다.

  • PDF

딥러닝 기반 항공안전 이상치 탐지 기술 동향 (Research Trends on Deep Learning for Anomaly Detection of Aviation Safety)

  • 박노삼
    • 전자통신동향분석
    • /
    • 제36권5호
    • /
    • pp.82-91
    • /
    • 2021
  • This study reviews application of data-driven anomaly detection techniques to the aviation domain. Recent advances in deep learning have inspired significant anomaly detection research, and numerous methods have been proposed. However, some of these advances have not yet been explored in aviation systems. After briefly introducing aviation safety issues, data-driven anomaly detection models are introduced. Along with traditional statistical and well-established machine learning models, the state-of-the-art deep learning models for anomaly detection are reviewed. In particular, the pros and cons of hybrid techniques that incorporate an existing model and a deep model are reviewed. The characteristics and applications of deep learning models are described, and the possibility of applying deep learning methods in the aviation field is discussed.

조합형 Fixed Point 알고리즘의 독립성분분석을 이용한 영상의 특징추출 (Image Feature Extraction Using Independent Component Analysis of Hybrid Fixed Point Algorithm)

  • 조용현;강현구
    • 한국산업융합학회 논문집
    • /
    • 제6권1호
    • /
    • pp.23-29
    • /
    • 2003
  • This paper proposes an efficient feature extraction of the images by using independent component analysis(ICA) based on neural networks of the hybrid learning algorithm. The proposed learning algorithm is the fixed point(FP) algorithm based on Newton method and moment. The Newton method, which uses to the tangent line for estimating the root of function, is applied for fast updating the inverse mixing matrix. The moment is also applied for getting the better speed-up by restraining an oscillation due to compute the tangent line. The proposed algorithm has been applied to the 10,000 image patches of $12{\times}12$-pixel that are extracted from 13 natural images. The 144 features of $12{\times}12$-pixel and the 160 features of $16{\times}16$-pixel have been extracted from all patches, respectively. The simulation results show that the extracted features have a localized characteristics being included in the images in space, as well as in frequency and orientation. And the proposed algorithm has better performances of the learning speed than those using the conventional FP algorithm based on Newton method.

  • PDF

회귀용 Support Vector Machine의 성능개선을 위한 조합형 학습알고리즘 (Hybrid Learning Algorithm for Improving Performance of Regression Support Vector Machine)

  • 조용현;박창환;박용수
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.477-484
    • /
    • 2001
  • 본 논문에서는 회귀용 support vector machine의 성능 개선을 위한 모멘텀과 kernel-adatron 기법이 조합형 학습알고리즘을 제안하였다. 제안된 학습알고리즘은 supper vector machine의 학습기법인 기술기상승법에 발생하는 최적해로의 수렴에 따란 발진을 억제하여 그수렴속도를 좀 더 개선시키는 모멘텀의 장점과 비선형 특징공간에서의 동작과 구현의 용이성을 갖는 kernel-adatorn 알고리즘의 장점을 그대로 살린 것이다. 제안된 알고리즘의 support vector machine을 1차원과 2차원 비선형 함수 회귀에 적용하여 시뮬레이션한 결과, 학습속도에 있어서 2차 프로그래밍과 기존의 kernel-adaton 알고리즘보다 더 우수하고, 회귀성능면에서도 우수한 성능이 있음을 확인하였다.

  • PDF

유전 알고리즘을 이용한 Max-Plus 기반의 뉴럴 네트워크 최적화 (Optimization of Max-Plus based Neural Networks using Genetic Algorithms)

  • 한창욱
    • 융합신호처리학회논문지
    • /
    • 제14권1호
    • /
    • pp.57-61
    • /
    • 2013
  • 본 논문에서는 하이브리드 유전 알고리즘을 이용한 morphological 뉴럴 네트워크 (MNN)의 최적화 방법을 제안하였다. MNN은 max-plus 연산을 기반으로 하고 있으므로 경사 학습법에 의한 파라미터 학습이 매우 어렵다. 이러한 문제를 해결하기 위해 하이브리드 유전 알고리즘을 이용하여 MNN의 파라미터들을 학습하였다. 제안된 방법의 유용성을 보이기 위해 SIDBA(standard image database) 표준영상에서 추출된 테스트 영상을 이용한 영상 압축/복원 실험을 수행하였고, 그 결과 제안된 방법에 의한 복원 영상이 합-곱 연산에 기반한 기존의 뉴럴 네트워크에 의한 복원영상보다 우수함을 알 수 있었다.

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.