• Title/Summary/Keyword: Hybrid learning

Search Result 559, Processing Time 0.025 seconds

A study on environmental adaptation and expansion of intelligent agent (지능형 에이전트의 환경 적응성 및 확장성)

  • Baek, Hae-Jung;Park, Young-Tack
    • The KIPS Transactions:PartB
    • /
    • v.10B no.7
    • /
    • pp.795-802
    • /
    • 2003
  • To live autonomously, intelligent agents such as robots or virtual characters need ability that recognizes given environment, and learns and chooses adaptive actions. So, we propose an action selection/learning mechanism in intelligent agents. The proposed mechanism employs a hybrid system which integrates a behavior-based method using the reinforcement learning and a cognitive-based method using the symbolic learning. The characteristics of our mechanism are as follows. First, because it learns adaptive actions about environment using reinforcement learning, our agents have flexibility about environmental changes. Second, because it learns environmental factors for the agent's goals using inductive machine learning and association rules, the agent learns and selects appropriate actions faster in given surrounding and more efficiently in extended surroundings. Third, in implementing the intelligent agents, we considers only the recognized states which are found by a state detector rather than by all states. Because this method consider only necessary states, we can reduce the space of memory. And because it represents and processes new states dynamically, we can cope with the change of environment spontaneously.

Two person Interaction Recognition Based on Effective Hybrid Learning

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Kim, Jin Woo;Bashar, Md Rezaul;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.751-770
    • /
    • 2019
  • Action recognition is an essential task in computer vision due to the variety of prospective applications, such as security surveillance, machine learning, and human-computer interaction. The availability of more video data than ever before and the lofty performance of deep convolutional neural networks also make it essential for action recognition in video. Unfortunately, limited crafted video features and the scarcity of benchmark datasets make it challenging to address the multi-person action recognition task in video data. In this work, we propose a deep convolutional neural network-based Effective Hybrid Learning (EHL) framework for two-person interaction classification in video data. Our approach exploits a pre-trained network model (the VGG16 from the University of Oxford Visual Geometry Group) and extends the Faster R-CNN (region-based convolutional neural network a state-of-the-art detector for image classification). We broaden a semi-supervised learning method combined with an active learning method to improve overall performance. Numerous types of two-person interactions exist in the real world, which makes this a challenging task. In our experiment, we consider a limited number of actions, such as hugging, fighting, linking arms, talking, and kidnapping in two environment such simple and complex. We show that our trained model with an active semi-supervised learning architecture gradually improves the performance. In a simple environment using an Intelligent Technology Laboratory (ITLab) dataset from Inha University, performance increased to 95.6% accuracy, and in a complex environment, performance reached 81% accuracy. Our method reduces data-labeling time, compared to supervised learning methods, for the ITLab dataset. We also conduct extensive experiment on Human Action Recognition benchmarks such as UT-Interaction dataset, HMDB51 dataset and obtain better performance than state-of-the-art approaches.

Development of mobile, online/offline-linked math learning content to promote group creativity (집단창의성 발현을 위한 모바일, 온/오프라인 연계 수학 학습 콘텐츠 개발)

  • Kim, Bumi
    • Journal of the Korean School Mathematics Society
    • /
    • v.25 no.1
    • /
    • pp.39-60
    • /
    • 2022
  • In this study, in order to support the expression of group creativity of high school students, we developed mathematics learning contents linked with mobile and online/offline that obtain the maximum and minimum values of the function within a limited range. This learning content was developed in connection with the 'environment', a cross-curricular learning topic. We explored the concept of group creativity in school mathematics. Its manifestation process, elements of group creativity expression process, and mobile and on/offline implementation functions were also explored. Then, we developed a hybrid app, 'Making the Best Box that Thinks of the Earth', which can express group creativity through mobile and online/offline-linked cooperative learning. A learning management system (LMS) and a teaching and learning guidance plan were also developed to efficiently operate mobile and online/offline-linked math learning using the app in schools. Our study found that the hybrid app, 'Creating the Best Box that Thinks of the Earth', was suitable for promoting collective fluency and collective sophistication based on complementary-metacognitive interaction.

A Hybrid Recommendation System based on Fuzzy C-Means Clustering and Supervised Learning

  • Duan, Li;Wang, Weiping;Han, Baijing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2399-2413
    • /
    • 2021
  • A recommendation system is an information filter tool, which uses the ratings and reviews of users to generate a personalized recommendation service for users. However, the cold-start problem of users and items is still a major research hotspot on service recommendations. To address this challenge, this paper proposes a high-efficient hybrid recommendation system based on Fuzzy C-Means (FCM) clustering and supervised learning models. The proposed recommendation method includes two aspects: on the one hand, FCM clustering technique has been applied to the item-based collaborative filtering framework to solve the cold start problem; on the other hand, the content information is integrated into the collaborative filtering. The algorithm constructs the user and item membership degree feature vector, and adopts the data representation form of the scoring matrix to the supervised learning algorithm, as well as by combining the subjective membership degree feature vector and the objective membership degree feature vector in a linear combination, the prediction accuracy is significantly improved on the public datasets with different sparsity. The efficiency of the proposed system is illustrated by conducting several experiments on MovieLens dataset.

Design of Hybrid Unsupervised-Supervised Classifier for Automatic Emotion Recognition (자동 감성 인식을 위한 비교사-교사 분류기의 복합 설계)

  • Lee, JeeEun;Yoo, Sun K.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1294-1299
    • /
    • 2014
  • The emotion is deeply affected by human behavior and cognitive process, so it is important to do research about the emotion. However, the emotion is ambiguous to clarify because of different ways of life pattern depending on each individual characteristics. To solve this problem, we use not only physiological signal for objective analysis but also hybrid unsupervised-supervised learning classifier for automatic emotion detection. The hybrid emotion classifier is composed of K-means, genetic algorithm and support vector machine. We acquire four different kinds of physiological signal including electroencephalography(EEG), electrocardiography(ECG), galvanic skin response(GSR) and skin temperature(SKT) as well as we use 15 features extracted to be used for hybrid emotion classifier. As a result, hybrid emotion classifier(80.6%) shows better performance than SVM(31.3%).

A Study on the Hybrid Data Mining Mechanism Based on Association Rules and Fuzzy Neural Networks (연관규칙과 퍼지 인공신경망에 기반한 하이브리드 데이터마이닝 메커니즘에 관한 연구)

  • Kim Jin Sung
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.884-888
    • /
    • 2003
  • In this paper, we introduce the hybrid data mining mechanism based in association rule and fuzzy neural networks (FNN). Most of data mining mechanisms are depended in the association rule extraction algorithm. However, the basic association rule-based data mining has not the learning ability. In addition, sequential patterns of association rules could not represent the complicate fuzzy logic. To resolve these problems, we suggest the hybrid mechanism using association rule-based data mining, and fuzzy neural networks. Our hybrid data mining mechanism was consisted of four phases. First, we used general association rule mining mechanism to develop the initial rule-base. Then, in the second phase, we used the fuzzy neural networks to learn the past historical patterns embedded in the database. Third, fuzzy rule extraction algorithm was used to extract the implicit knowledge from the FNN. Fourth, we combine the association knowledge base and fuzzy rules. Our proposed hybrid data mining mechanism can reflect both association rule-based logical inference and complicate fuzzy logic.

  • PDF

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF

Long-term Driving Data Analysis of Hybrid Electric Vehicle

  • Woo, Ji-Young;Yang, In-Beom
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.3
    • /
    • pp.63-70
    • /
    • 2018
  • In this work, we analyze the relationship between the accumulated mileage of hybrid electric vehicle(HEV) and the data provided from vehicle parts. Data were collected while traveling over 70,000 Km in various paths. The data collected in seconds are aggregated for 10 minutes and characterized in terms of centrality, variability, normality, and so on. We examined whether the statistical properties of vehicle parts are different for each cumulative mileage interval of a hybrid car. When the cumulative mileage interval is categorized into =< 30,000, <= 50,000, and >50,000, the statistical properties are classified by the mileage interval as 82.3% accuracy. This indicates that if the data of the vehicle parts is collected by operating the hybrid vehicle for 10 minutes, the cumulative mileage interval of the vehicle can be estimated. This makes it possible to detect the abnormality of the vehicle part relative to the accumulated mileage. It can be used to detect abnormal aging of vehicle parts and to inform maintenance necessity.

Characterization of Deep Learning-Based and Hybrid Iterative Reconstruction for Image Quality Optimization at Computer Tomography Angiography (전산화단층촬영조영술에서 화질 최적화를 위한 딥러닝 기반 및 하이브리드 반복 재구성의 특성분석)

  • Pil-Hyun, Jeon;Chang-Lae, Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2023
  • For optimal image quality of computer tomography angiography (CTA), different iodine concentrations and scan parameters were applied to quantitatively evaluate the image quality characteristics of filtered back projection (FBP), hybrid-iterative reconstruction (hybrid-IR), and deep learning reconstruction (DLR). A 320-row-detector CT scanner scanned a phantom with various iodine concentrations (1.2, 2.9, 4.9, 6.9, 10.4, 14.3, 18.4, and 25.9 mg/mL) located at the edge of a cylindrical water phantom with a diameter of 19 cm. Data obtained using each reconstruction technique was analyzed through noise, coefficient of variation (COV), and root mean square error (RMSE). As the iodine concentration increased, the CT number value increased, but the noise change did not show any special characteristics. COV decreased with increasing iodine concentration for FBP, adaptive iterative dose reduction (AIDR) 3D, and advanced intelligent clear-IQ engine (AiCE) at various tube voltages and tube currents. In addition, when the iodine concentration was low, there was a slight difference in COV between the reconstitution techniques, but there was little difference as the iodine concentration increased. AiCE showed the characteristic that RMSE decreased as the iodine concentration increased but rather increased after a specific concentration (4.9 mg/mL). Therefore, the user will have to consider the characteristics of scan parameters such as tube current and tube voltage as well as iodine concentration according to the reconstruction technique for optimal CTA image acquisition.

A Study on Adaptive Random Signal-Based Learning Employing Genetic Algorithms and Simulated Annealing (유전 알고리즘과 시뮬레이티드 어닐링이 적용된 적응 랜덤 신호 기반 학습에 관한 연구)

  • Han, Chang-Wook;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.819-826
    • /
    • 2001
  • Genetic algorithms are becoming more popular because of their relative simplicity and robustness. Genetic algorithms are global search techniques for nonlinear optimization. However, traditional genetic algorithms, though robust, are generally not the most successful optimization algorithm on any particular domain because they are poor at hill-climbing, whereas simulated annealing has the ability of probabilistic hill-climbing. Therefore, hybridizing a genetic algorithm with other algorithms can produce better performance than using the genetic algorithm or other algorithms independently. In this paper, we propose an efficient hybrid optimization algorithm named the adaptive random signal-based learning. Random signal-based learning is similar to the reinforcement learning of neural networks. This paper describes the application of genetic algorithms and simulated annealing to a random signal-based learning in order to generate the parameters and reinforcement signal of the random signal-based learning, respectively. The validity of the proposed algorithm is confirmed by applying it to two different examples.

  • PDF