• Title/Summary/Keyword: Hybrid layer thickness

Search Result 110, Processing Time 0.028 seconds

THE EFFECT OF HYBRID LAYER THICKNESS ON MICROTENSILE BOND STRENGTH OF THREE-STEP AND SELF-ETCHING DENTIN ADHESIVE SYSTEMS (혼성층의 두께가 three-step과 self-etching 상아질 접착제의 미세인장결합강도에 미치는 효과)

  • Lee, Hye-Jung;Park, Jeong-Kil;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.28 no.6
    • /
    • pp.491-497
    • /
    • 2003
  • The purpose of this study was to evaluate the correlation between hybrid layer thickness and bond strength using confocal laser scanning microscope and microtensile bond strength test of two adhesive systems. The dentin surface of human molars. sectioned to remove the enamel from the occlusal surface. Either Scotchbond Multi-Purpose(3M Dental Product, St. Paul, MN, U.S.A) or Clearfil SE Bond (Kuraray, Osaka, Japan) was bonded to the surface. and covered with resin-composite. The resin-bonded teeth were serially sliced perpendicular to the adhesive interface to measure the hybrid layer thickness by confocal laser scanning microscope. The specimen were trimmed to give a bonded cross-sectional surface area of $1\textrm{mm}^2$, then the micro-tensile bone test was performed at a cross head speed of 1.0 mm/min. All fractured surfaces were also observed by stereomicroscope. There was no significant differences in bond strengths the materials(p>0.05). However. the hybrid layers of three-step dentin adhesive system, SM, had significantly thicker than self-etching adhesive system. CS(p<0.05). Pearson's correlation coefficient showed no correlation between hybrid layer thickness and bond strengths(p>0.05). Bond strengths of dentin adhesive systems were not dependent on the thickness of hybrid layer.

Electrical and Optical Properties of Transparent Conducting Films having GZO/Metal/GZO Hybrid-structure; Effects of Metal Layer(Ag, Cu, Al, Zn) (GZO/Metal/GZO 하이브리드 구조 투명 전도막의 전기적, 광학적 특성; Ag, Cu, Al, Zn 금속 삽입층의 효과)

  • Kim, Hyeon-Beom;Kim, Dong-Ho;Lee, Gun-Hwan;Kim, Kang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.148-153
    • /
    • 2010
  • Transparent conducting films having a hybrid structure of GZO/Metal/GZO were prepared on glass substrates by sequential deposition using DC magnetron sputtering. Silver, copper, aluminum and zinc thin films were used as the intermediate metal layers in the hybrid structure. The electrical and optical properties of hybrid transparent conducting films were investigated with varying the thickness of metal layer or GZO layers. With increasing the metal thickness, hybrid films showed a noticeable improvement of the electrical conductivity, which is mainly dependent on the electrical property of the metal layer. GZO(40 nm)/Ag(10 nm)/GZO(40 nm) film exhibits a resistivity of $5.2{\times}10^{-5}{\Omega}{\cdot}cm$ with an optical transmittance of 82.8%. For the films with Zn interlayer, only marginal reduction in the resistivity was observed. Furthermore, unlike other metals, hybrid films with Zn interlayer showed a decrease in the resistivity with increasing the GZO thickness. The optimal thickness of GZO layer for anti-reflection effect at a given thickness of metal (10 nm) was found to be critically dependent on the refractive index of the metal. In addition, x-ray diffraction analysis showed that the insertion of Ag layer resulted in the improvement of crystallinity of GZO films, which is beneficial for the electrical and optical properties of hybrid-type transparent conducting films.

Low Temperature Encapsulation-Layer Fabrication of Organic-Inorganic Hybrid Thin Film by Atomic Layer Deposition-Molecular Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.274-274
    • /
    • 2013
  • We fabricate encapsulation-layer of OLED panel from organic-inorganic hybrid thin film by atomic layer deposition (ALD) molecular layer deposition (MLD) using Al2O3 as ALD process and Adipoyl Chloride (AC) and 1,4-Butanediamine as MLD process. Ellipsometry was employed to verify self-limiting reaction of MLD. Linear relationship between number of cycle and thickness was obtained. By such investigation, we found that desirable organic thin film fabrication is possible by MLD surface reaction in monolayer scale. Purging was carried out after dosing of each precursor to eliminate physically adsorbed precursor with surface. We also confirmed roughness of the organic thin film by atomic force microscopy (AFM). We deposit AC and 1,4-Butanediamine at $70^{\circ}C$ and investigated surface roughness as a function of increasing thickness of organic thin film. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates super-lattice film can be possibly use as encapsulation in flexible devices.

  • PDF

Effect of Fiber Orientation on Failure Strength Properties of Natural Fiber Reinforced Composites including Adhesive Bonded Joint (접착제 접합된 자연섬유강화 복합재료의 파괴강도 특성에 미치는 섬유 방향의 영향)

  • Yoon, Ho-Chel
    • Journal of Welding and Joining
    • /
    • v.24 no.5
    • /
    • pp.43-48
    • /
    • 2006
  • This paper is concerned with a fracture strength study of composite adhesive lap joints. The tests were carried out on specimen joints manufactured hybrid stacked composites such as the polyester and bamboo natural fiber layer. The main objective of the work was to test the fracture strength using hybrid stacked composites with a polyester and bamboo natural fiber layer. Tensile and peel strength of hybrid stacked composites are tested before appling adhesive bonding. From results, Natural fiber reinforced composites have lower tensile strength than the original polyester. and The load directional orientation and small amount and low thickness of bamboo natural fiber layer have a good effect on the tensile and peel strength of natural fiber reinforced composites. The failure strength of these materials applied adhesive bonding is also affected by fiber orientation and thickness of bamboo natural fiber layer. There for, Fiber orientation of bamboo natural fiber layer have a great effect on the tensile-shear strength of natural fiber reinforced composites including adhesive bonded joints.

Layer Generation for Hybrid Rapid Prototyping System Using Machining and Deposition (절삭과 적층을 복합적으로 수행하는 하이브리드방식 쾌속시작시스템을 위한 층분할)

  • Lee K.W.;Kang J.G.;Zhu H.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.10 no.6
    • /
    • pp.421-431
    • /
    • 2005
  • This paper introduces a new approach for saving build time of hybrid rapid prototyping by decomposing a part into minimum number of layers. In the hybrid rapid prototyping, a part of a complicated shape is realized by adding layers of a simpler shape, each of which is obtained by machining a sheet of constant thickness from its top and bottom surfaces. Thus it is desired to decompose a given part into the minimum number of layers while guaranteeing each layer to be fabricated from the given sheets using a 3-axis milling machine. To satisfy these requirements, a concave edge-based algorithm is proposed to decompose a part into layers by considering the tool accessibility, the total number of layers, and the allowable sheet thickness.

The Effect of PEDOT:PSS Thickness on the Characteristics of Organic-Inorganic Hybrid Solar Cells (PEDOT:PSS의 두께가 유무기 하이브리드 태양전지 성능에 미치는 영향)

  • Kim, Souk Yoon;Han, Joo Won;Oh, Joon-Ho;Kim, Yong Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.61-64
    • /
    • 2019
  • In this study, we investigate organic-inorganic hybrid solar cells with a very simple three-layer structure (Al/n-Si/PEDOT:PSS). The performance of hybrid solar cells is optimized by controlling the sheet resistance and optical transmittance of the PEDOT:PSS layers. As the thickness of the PEDOT:PSS layer decreases, the optical absorption of the n-Si increases, which greatly improves the short-circuit current density ($J_{SC}$) of devices, but the increase in sheet resistance leads to a decrease in the open-circuit voltage ($V_{OC}$) and the fill factor (FF). The solar cell with the 180-nm thick PEDOT:PSS layer shows a highest efficiency of 8.45% ($V_{OC}$: 0.435 V, $J_{SC}$: $33.7mA/cm^2$, FF: 57.5%). Considering these results, it is expected that the optimizing process for the sheet resistance and transmittance of the PEDOT:PSS layer is essential for producing high-efficiency organic-inorganic hybrid solar cells and will serve as an important basis for achieving low-cost, high-efficiency solar cells.

Synthesis and application of Pt and hybrid Pt-$SiO_2$ nanoparticles and control of particles layer thickness (Pt 나노입자와 Hybrid Pt-$SiO_2$ 나노입자의 합성과 활용 및 입자박막 제어)

  • Choi, Byung-Sang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.4
    • /
    • pp.301-305
    • /
    • 2009
  • Pt nanoparticles with a narrow size distribution (dia. ~4 nm) were synthesized via an alcohol reduction method and used for the fabrication of hybrid Pt-$SiO_2$ nanoparticles. Also, the self-assembled monolayer of Pt nanoparticles (NPs) was studied as a charge trapping layer for non-volatile memory (NVM) applications. A metal-oxide-semiconductor (MOS) type memory device with Pt NPs exhibits a relatively large memory window. These results indicate that the self-assembled Pt NPs can be utilized for NVM devices. In addition, it was tried to show the control of thin-film thickness of hybrid Pt-$SiO_2$ nanoparticles indicating the possibility of much applications for the MOS type memory devices.

  • PDF

The Spacer Thickness Effects on the Electroluminescent Characteristics of Hybrid White Organic Light-emitting Diodes

  • Seo, Ji-Hoon;Park, Jung-Sun;Seo, Bo-Min;Kim, Young-Kwan;Lee, Kum-Hee;Yoon, Seung-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.10 no.6
    • /
    • pp.208-211
    • /
    • 2009
  • The authors have demonstrated the various characteristics of hybrid white organic light-emitting diodes (HWOLED) using fluorescent blue and phosphorescent red emitters. We also demonstrated that two devices showed different characteristics in accordance with thickness of the 4,4′-N,N′-dicarbazole-biphenyl (CBP) spacer (CS) inserted between the blue and the red emitting layer. It was found that the device with a CS thickness of 70 $\AA$ showed a current efficiency 2.5 times higher than that of the control device with a CS thickness of 30 $\AA$ by preventing the triplet Dexter energy transfer from the red to the blue emitting layer. The HWOLED with the CS thickness of 70 $\AA$ exhibited a maximum luminance of 24500 cd/$m^2$, a maximum current efficiency of 42.9 cd/A, a power efficiency of 37.5 lm/W, and Commission Internationale de I'Eclairage coordinates of (0.37, 0.42).

MICROLEAKAGE AND MARGINAL HYBRID LAYER OF DENTIN ADHESIVES (상아질 접착제의 미세누출과 변연부 혼화층)

  • Cho, Young-Gon;Kim, Young-Kwan;Ahn, Jong-Mo
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.1
    • /
    • pp.34-43
    • /
    • 2002
  • The purpose of this study was to compare microleakage and marginal hybrid layer in class V restorations using two one-bottle adhesives and one self-etching adhesive. Class V cavity preparations with occlusal margins in enamel and gingival margins in dentin were pre-pared on buccal and lingual surfaces of 30 extracted human molar teeth. Prepared teeth were randomly divided into three treatment groups (n=30) and restored with three adhesives and composites: Single Bond/Filtek Z-250 (Group 1), Prime&BondNT/Esthet.X (Group 2), UniFil Bond/UniFil F (Group 3). For microleakage, samples were stored in room temperature water for 24 hours, thermocycled stained with 2% methylene blue dye, sectioned into halves, scored and analysed using Mann-whitney test and Wilcoxon signed rank sum test. For marginal hybrid layer, samples were sectioned into halves, treated with 10% phosphoric acid for 5 seconds, stored in 5% NaOCL solution for 24 hours, dried and gold coated. Occlusal and gingival margins of each sample were inspected under SEM. The results of this study were as follows ; 1. Microleakage at the occlusal margins was not evident in group 1 and group 2, but it showed in group 3 (p<0.05). 2. Microleakage in group 1 and group 3 was significantly lower than in group 2 at gingival margins (p<0.05). 3. Microleakage at gingival margins was greater than at occlusal margins in group 1 and group 2, but microleakage at occlusal margins was greater than at gingival margins in group 3 (p<0.05). 4. In group 1 and group 2, no gaps at occlusal margins showed. But gaps showed in group 3. Occlusal margins were free from a hybrid layer in all groups 5. The thickness of the marginal hybrid layers was 2.5~5 $\mu\textrm{m}$ thick in group 5 $\mu\textrm{m}$ thick in group 2 and 1.5 $\mu\textrm{m}$ thick in group 3. 6 There was no corelation between microleakage and thickness of marginal hybrid layer. In coclusion, the effect of dentin adhesives on microleakge in class V composite restorations was excellent when one-bottle adhesives were applied on enamel margin, and it was good when a self-etching adhesive was applied on dentinal margin. There was no corelation between microleakage and thickness of marginal hybrid layer.

The use of ZrO2 as an electron-injecting layer in hybrid metal-oxide/polymer light-emitting diodes

  • Tokmoldin, Nurlan;Bradley, Donal D.C.;Haque, Saif
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.779-780
    • /
    • 2009
  • New inverted architecture of a hybrid inorganic-organic light-emitting diode, utilizing ZrO2 electron-injecting layer, is presented. The thickness of the ZrO2, as well as the annealing of the light-emitting polymer, is found critical to obtain good performance. A range of light-emitting polymers is shown to operate efficiently in the proposed architecture.

  • PDF