• Title/Summary/Keyword: Hybrid generator

Search Result 259, Processing Time 0.031 seconds

Research on SPMS for Pulsating Load based on Communication Network (통신 네트워크 기반의 맥동 부하용 SPMS에 관한 연구)

  • Oh, Jin Seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.4
    • /
    • pp.927-933
    • /
    • 2014
  • Ship Power Management System(SPMS) based on Communication Network(CN) is one of the most significant factor for a safe voyage. Therefore, most of the vessels are using greater capacity generator than necessary to prevent pulsating load for safety purposes. However, It provokes low-load damage and reduces generator efficiency that using large capacity generator. Accordingly, in this paper propose hybrid power system for prevent damage of pulse load. Simulation using NI's LabVIEW was conducted for the design of the power system based on actual navigation data of the ship. Also, propose applying methods for hybrid power system in connection with the auxiliary power system for safe navigation.

Study on Impact of Wind Power in Grid Frequency Quality of Stand-alone Microgrid (독립형 마이크로그리드내 풍력발전출력이 주파수 품질에 미치는 영향 분석)

  • Huh, Jae-Sun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.79-85
    • /
    • 2016
  • This paper analyzed the influence of wind power fluctuations in grid frequency of a stand-alone microgrid that is hybrid generation system with diesel generator, wind turbine, and Battery Energy Storage System (BESS). The existing island area power system consists of only diesel generators. So the grid frequency can be controllable from load change. But hybrid generation system with Renewable Energy Sources (RES) such as wind energy that has the intermittent output can bring power quality problems. BESS is one of the ways to improve the intermittent output of the RES. In this paper, we analyzed the role of BESS in a stand-alone microgrid. We designed a modelling of wind power system with squirrel-cage induction generator, diesel power system with synchronous generator, and BESS using transient analysis program PSCAD/EMTDC. And we analyzed the variation of the grid frequency according to the output of BESS.

Power Quality Improvement Using Hybrid Passive Filter Configuration for Wind Energy Systems

  • Kececioglu, O. Fatih;Acikgoz, Hakan;Yildiz, Ceyhun;Gani, Ahmet;Sekkeli, Mustafa
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.207-216
    • /
    • 2017
  • Wind energy conversion systems (WECS) which consist of wind turbines with permanent magnet synchronous generator (PMSG) and full-power converters have become widespread in the field of renewable power systems. Generally, conventional diode bridge rectifiers have used to obtain a constant DC bus voltage from output of PMSG based wind generator. In recent years, together advanced power electronics technology, Pulse Width Modulation (PWM) rectifiers have used in WECS. PWM rectifiers are used in many applications thanks to their characteristics such as high power factor and low harmonic distortion. In general, L, LC and LCL-type filter configurations are used in these rectifiers. These filter configurations are not exactly compensate current and voltage harmonics. This study proposes a hybrid passive filter configuration for PWM rectifiers instead of existing filters. The performance of hybrid passive filter was tested via MATLAB/Simulink environment under various operational conditions and was compared with LCL filter structure. In addition, neuro-fuzzy controller (NFC) was preferred to increase the performance of PWM rectifier in DC bus voltage control against disturbances because of its robust and nonlinear structure. The study demonstrates that the hybrid passive filter configuration proposed in this study successfully compensates current and voltage harmonics, and improves total harmonic distortion and true power factor.

A Study on Power Management Strategy for Multi-Power Source Fuel Cell Hybrid Armored Vehicle (다중 동력 연료전지 하이브리드 장갑차량의 동력관리 전략에 관한 연구)

  • An Sang-Jun;Kim Tae-Jin;Lee Kyo Il
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.361-365
    • /
    • 2005
  • Since the fuel cell uses the hydrogen for its fuel. it has no emission and higher efficiency than an internal combustion engine. Also fuel cell is much quieter than engine generator and generates heat much less than engine generator. So it has advantage of Army's 'si lent watch' capability and the ability to operate undetected by the enemy. The fuel cell hybrid system combines a fuel cell power system with an ESS. The ESS (e.g., batteries or ultracapacitors) reduces the fuel cell's peak power and transient response requirements. It allows the fuel cell to operate more efficiently and recovery of vehicle energy during deceleration. The battery has high energy density, so it has the advantage regarding driving distance. However, it has a disadvantage considering dynamic characteristic because of low power density. One other hand. the ultracapacitor has higher power density, so it can handle sudden change or discharge of required power. Yet. it has lower energy density. so it will be bigger and heavier than the battery when it has the same energy. This paper proposes the power management strategy for multi-power source fuel cell hybrid system. which is applied with the merits of both battery and ultra capacitor by using both of them simultaneous.

  • PDF

Fuzzy Logic Based Energy Management For Wind Turbine, Photo Voltaic And Diesel Hybrid System

  • Talha, Muhammad;Asghar, Furqan;Kim, Sung Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.351-360
    • /
    • 2016
  • Rapid population growth with high living standards and high electronics use for personal comfort has raised the electricity demand exponentially. To fulfill this elevated demand, conventional energy sources are shifting towards low production cost and long term usable alternative energy sources. Hybrid renewable energy systems (HRES) are becoming popular as stand-alone power systems for providing electricity in remote areas due to advancement in renewable energy technologies and subsequent rise in prices of petroleum products. Wind and solar power are considered feasible replacement to fossil fuels as the prediction of the fuel shortage in the near future, forced all operators involved in energy production to explore this new and clean source of power. Presented paper proposes fuzzy logic based Energy Management System (EMS) for Wind Turbine (WT), Photo Voltaic (PV) and Diesel Generator (DG) hybrid micro-grid configuration. Battery backup system is introduced for worst environmental conditions or high load demands. Dump load along with dump load controller is implemented for over voltage and over speed protection. Fuzzy logic based supervisory control system performs the power flow control between different scenarios such as battery charging, battery backup, dump load activation and DG backup in most intellectual way.

A Study on a Combined DMFC-Lithium Battery Hybrid System for a Forklift (지게차용 DMFC와 리튬배터리 하이브리드시스템의 혼합 적용에 대한 연구)

  • Ju, Yong-Soo;Lim, Dong-Jin;Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.57-65
    • /
    • 2021
  • This paper explains a DMFC-Lithium Battery hybrid system applied to a forklift. A conventional Lead Acid battery forklift has several problems: long charging times, short operation times, and frequent battery replacements. As a result, hydrogen-powered forklifts are replacing Lead acid battery-powered forklifts due to their shorter refueling time and longer operation times. However, in doing so, we are confronted with the problem of a high hydrogen refueling infrastructure. A Direct Methanol Fuel Cell (DMFC), on the other hand, is an eco-friendly generator that directly converts the chemical energy of methanol into electricity. In general, DMFC is regarded as a small power generator under kW power. In this paper, a DMFC-Battery hybrid system is applied to a 1.5 ton forklift by increasing the power output of the DMFC stack and utilizing the high charge-discharge characteristics of a lithium battery.

A Study on Hybrid Power Generation System for Hour-Flight Drone (시간체공 드론 적용을 위한 하이브리드 동력시스템 연구)

  • Myung-Wook Choi;Seung-Jin Yang;Jung-Min Lim;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.269-276
    • /
    • 2023
  • In this research works, we propose a hybrid power generation system for drone capable of staying in the air for more than 1 hour. This power system converts the alternating current generated by the generator into direct current through a diode bridge circuit to charge the battery and uses a battery system having separated cells to obtain high controllability of the power system. The fuel efficiency and the power output for individual load were analyzed, and also the performance of a selected generator was studied in this paper. The drone which is equipped with the proposed hybrid power generation system calculated 0.82 ratio for weight vs power output, and flight time of drone showed 4,179 seconds.

Development of measurement equipment for hybrid propulsion system of bimodal tram (바이모달 트램의 직렬형 하이브리드 추진시스템 계측장비 개발)

  • Bae, Chang-Han;Chang, Se-Ky;Mok, Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.241-248
    • /
    • 2010
  • A bimodal low-floor tram can provide the punctuality of trains and the flexibility of bus together to the passengers. Its propulsion system is a series hybrid type using a set of CNG engine generator and Li-polymer battery. This paper presents a development of the measurement equipment for fine-tuning of a series hybrid propulsion system of bimodal low-floor tram. Its configuration schemes are described and certified using the measurement data of bimodal low-floor tram.

  • PDF

A Mathematical Model Development of Automotive Transmission Starter-Generator (자동차 트랜스미션 스타터-제너레이터의 수학적 모델 개발)

  • Jang BongChoon;Karnopp Dean C.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.123-128
    • /
    • 2006
  • The proposed mathematical model of the starter-generator system incorporates the motor speed, battery voltage and the desired current to estimate the moment generation capabilities of the starter-generator and the actual current of the battery system. The fundamentals for this mathematical modeling are the simulated results of the experimental data. These pertinent data are used in establishing the governing equations for the determination of motor moments, actual battery currents and efficiencies of the system's operation at different loading characteristics and speed regions. The derived equations will be used into simulation programs to predict the fuel efficiency, vehicle characteristics of a hybrid electric vehicle equipped with a transmission starter-generator which will be developed.

Economic Analysis on PV/Diesel Power System for Remote Islands' Electrification (도서용 태양광/내연기관 발전시스템 경제성 비교 분석)

  • Lee, M.G.;Jeong, M.W.;Jin, Y.T.
    • Solar Energy
    • /
    • v.18 no.3
    • /
    • pp.147-151
    • /
    • 1998
  • Several PV-diesel hybrid systems were built in isolated islands in Korea, where they are far from the inland to be supplied the electric power to a utility level from it. A lot of efforts has been concentrated to find a cost-effective electric supply system with higher reliability and minimum maintenance when compared with a diesel generator. For this purpose, an autonomous PV-diesel hybrid system with multi-channel remote monitoring system was investigated to supply electric power under minimum operating cost and maintenance in a small isolated island. In this report, the economic analysis was performed for comparison with photovoltaic system and diesel generator by computer simulation. And it was proven that a PV system is more cost-effective than an internal combustion engine for the remote island with less than 150 households. Especially, in the case of islands with less than 50 households, the initial construction cost of the PV system is comparable to and its operating cost is about 70% less than the diesel generator.

  • PDF