• Title/Summary/Keyword: Hybrid generator

Search Result 259, Processing Time 0.037 seconds

A Two-Point Modulation Spread-Spectrum Clock Generator With FIR-Embedded Binary Phase Detection and 1-Bit High-Order ΔΣ Modulation

  • Xu, Ni;Shen, Yiyu;Lv, Sitao;Liu, Han;Rhee, Woogeun;Wang, Zhihua
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.4
    • /
    • pp.425-435
    • /
    • 2016
  • This paper describes a spread-spectrum clock generation method by utilizing a ${\Delta}{\Sigma}$ digital PLL (DPLL) which is solely based on binary phase detection and does not require a linear time-to-digital converter (TDC) or other linear digital-to-time converter (DTC) circuitry. A 1-bit high-order ${\Delta}{\Sigma}$ modulator and a hybrid finite-impulse response (FIR) filter are employed to mitigate the phase-folding problem caused by the nonlinearity of the bang-bang phase detector (BBPD). The ${\Delta}{\Sigma}$ DPLL employs a two-point modulation technique to further enhance linearity at the turning point of a triangular modulation profile. We also show that the two-point modulation is useful for the BBPLL to improve the spread-spectrum performance by suppressing the frequency deviation at the input of the BBPD, thus reducing the peak phase deviation. Based on the proposed architecture, a 3.2 GHz spread-spectrum clock generator (SSCG) is implemented in 65 nm CMOS. Experimental results show that the proposed SSCG achieves peak power reductions of 18.5 dB and 11 dB with 10 kHz and 100 kHz resolution bandwidths respectively, consuming 6.34 mW from a 1 V supply.

Comparison of Control Strategies for Military Series-Type HEVs in Terms of Fuel Economy Based on Vehicle Simulation (시뮬레이션을 이용한 군용 직렬형 HEV 의 주행 전략에 따른 연비 성능 비교에 관한 연구)

  • Jung, Dae-Bong;Kim, Hyung-Jun;Kang, Hyung-Mook;Park, Jae-Man;Min, Kyoung-Doug;Seo, Jung-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.31-36
    • /
    • 2012
  • Military vehicles, compared to conventional vehicles, require higher driving performance, quieter operation, and longer driving distances with minimal fuel supplies. The series hybrid electric vehicle can be driven with no noise and has high initial startup performance, because it uses only a traction motor that has a high startup torque to drive the vehicle. Moreover, the fuel economy can be improved if the vehicle is hybridized. In series hybrid electric vehicles, the electric generation system, which consists of an engine and a generator, supplies electric energy to a battery or traction motor depending on the vehicle driving state and battery state of charge (SOC). The control strategy determines the operation of the generation system. Thus, the fuel economy of the series hybrid electric vehicle relies on the control strategy. In this study, thermostat, power-follower, and combined strategies were compared, and a 37% improvement in the fuel economy was implemented using the combined control strategy suggested in this study.

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

Tensile and Compressive Strength Characteristics of Aluminized Paraffin Wax Fuel for Various Particle Size and Contents (파라핀/알루미늄 연료의 알루미늄 입자크기 및 함유비 변화에 따른 인장 및 압축강도 특성 연구)

  • Ryu, Sunghoon;Han, Seongjoo;Kim, Jinkon;Moon, Heejang;Kim, Junhyung;Ko, Seung Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.5
    • /
    • pp.70-76
    • /
    • 2016
  • Tensile and compressive strength tests were conducted to investigate the mechanical characteristics of aluminized paraffin wax fuel for hybrid gas generator applications. Mixtures of 0 wt%, 10 wt% and 30 wt% nano aluminum paraffin coupons as well as 5 wt%, 10 wt% and 15 wt% micro aluminum paraffin coupons were used. The average particle size of 100nm and of $8{\mu}m$ mixed each with microcrystalline paraffin wax(Sasol 0907) were chosen for the base specimens where the tensile strength test followed the ASTM-D638 specimen standard while the compressive strength test followed the ASTM D575-91. It was found that nano based specimens increased both the tensile and compressive strength enhancing the mechanical behavior of paraffin wax whereas the micro based specimens gave still less influential effect.

An Off-line Maximum Torque Control Strategy of Wound Rotor Synchronous Machine with Nonlinear Parameters

  • Wang, Qi;Lee, Heon-Hyeong;Park, Hong-Joo;Kim, Sung-Il;Lee, Geun-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.3
    • /
    • pp.609-617
    • /
    • 2016
  • Belt-driven Starter Generator (BSG) differs from other mild hybrid systems as the crankshaft of vehicle are not run off. Motor permits a low-cost method of adding mild hybrid capabilities such as start-stop, power assist, and mild levels of regenerative braking. Wound rotor synchronous motor (WRSM) could be adopted in BSG system for HEV e-Assisted application instead of the interior permanent magnet synchronous motor (IPMSM). In practice, adequate torque is indispensable for starter assist system, and energy conversion should be taken into account for the HEV or EV as well. Particularly, flux weakening control is possible to realize by adjusting both direct axis components of current and field current in WRSM. Accordingly, this paper present an off-line current acquisition algorithm that can reasonably combine the stator and field current to acquire the maximum torque, meanwhile the energy conversion is taken into consideration by losses. Besides, on account of inductance influence by non-uniform air gap around rotor, nonlinear inductances and armature flux linkage against current variation are proposed to guarantee the results closer to reality. A computer-aided method for proposed algorithm are present and results are given in form of the Look-up table (LUT). The experiment shows the validity of algorithm.

Evaluation of Hybrid Downscaling Method Combined Regional Climate Model with Step-Wise Scaling Method (RCM과 단계적 스케일링기법을 연계한 혼합 상세화기법의 적용성 평가)

  • Lee, Moon Hwan;Bae, Deg Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.6
    • /
    • pp.585-596
    • /
    • 2013
  • The objective of this study is to evaluate the hybrid downscaling method combined Step-Wise Scaling (SWS) method with Regional Climate Model (RCM) simulation data for climate change impact study on hydrology area. The SWS method is divided by 3 categories (extreme event, dry event and the others). The extreme events, wet-dry days and the others are corrected by using regression method, quantile mapping method, mean & variance scaling method. The application and evaluation of SWS method with 3 existing and popular statistical techniques (linear scaling method, quantile mapping method and weather generator method) were performed at the 61 weather stations. At the results, the accuracy of corrected simulation data by using SWS are higher than existing 3 statistical techniques. It is expected that the usability of SWS method will grow up on climate change study when the use of RCM simulation data are increasing.

A Study on the Establishment of the Microgrid in Chujado Island (추자도 마이크로그리드 구축에 관한 연구)

  • Kang, Min-Hyeok;Kim, Dong-Wan;Kim, Eel-Hwan
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.289-294
    • /
    • 2019
  • At present, domestic small islands mainly supply electric power using diesel generators. However, diesel generators can cause instability of the power system due to slow response on power load fluctuation, and cause environmental problems due to the emission of carbon gas by using fossil fuels. In order to overcome this problem, this paper proposes a method to establish an optimal microgrid by introducing solar power, wind power, and energy storage device to Chujado Island, which is supplied with electric power through a diesel generator. The economical optimum capacity of each distributed power source is calculated by using HOMER (Hybrid Optimization Model for Multiple Energy Resources) program and the proposed microgrid is validated by using PSCAD/EMTDC (Power Systems Computer Aided Design/ Electromagnetic Transients including DC) program which can analyze system stability.

Structural and Dynamic Analysis of a Unmanned Cargo Multicopter Using Hybrid Power System (하이브리드 추진 시스템을 이용한 수송용 멀티콥터 무인기의 구조 및 동특성 해석)

  • Kee, Youngjung;Kim, Taekyun
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.5
    • /
    • pp.78-85
    • /
    • 2022
  • Multicopter-type unmanned aerial vehicles (UAV) are increasingly for cargo transportation to mountainous and island regions, image information acquisition in disaster areas, and emergency rescue transport. In order to successfully perform these tasks, the aircraft structure must be able to safely support the loads induced by flight conditions while ensuring the vibration and aeroelastic stability of the prop-rotor. This study introduced a structural analysis model of a 40kg payload multicopter with an engine-generator hybrid power system. The deformation and stress distribution are investigated depending on the load conditions. In addition, the vibration characteristics and aeroelastic stability of the prop-rotor were also presented to flight speed and aircraft pitch angle. The maximum thrust generated by the prop-rotor and the landing load applied to the multicopter under normal and emergency landing conditions were reviewed., It confirmed that the structure could support without failure. In addition, it confirmed that the damping characteristics of each primary locate in the constant region according to the aircraft's flight speed and the prop-rotors rotating speed.

A Study on Various Structural Characteristics of 100W Linear Generator for Vehicle Suspension (차량 현가장치적용 100W급 선형발전기의 다양한 구조 특성)

  • Kim, Ji-Hye;Kim, Jin-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.683-688
    • /
    • 2018
  • Recently, the demand for electric energy has been increasing due to the spread of hybrid electric vehicles. In this study, to meet this demand, the ANSYS MAXWELL electromagnetic simulation system was used to compare the power generation characteristics of three types of suspension system that can generate electricity using energy harvesting technology. Next, the optimal design was determined for each model by using the commercial PIDO (Process Integration and Design Optimization) tool, PIANO (Process Integration, Automation and Optimization). We selected three design variables and constructed an approximate model based on the experimental design method through electromagnetic analysis for 18 experimental points derived from Orthogonal Arrays among the experimental design methods. Then, we determined the optimal design by applying the Evolutionary Algorithm. Finally, the optimal design results were verified by electromagnetic simulation of the optimum design result model using the same analysis conditions as those of the initial model. After comparing the power generation characteristics for the optimal structure for each linear generator model, the maximum power generation amounts in the 8pole-8slot, 12pole-12slot, and 16pole-16slot structures were 366.5W, 466.7W and 579.7W, respectively, and it was found that as the number of slots and poles increases, the power generation increases.

A single-memory based FFT/IFFT core generator for OFDM modulation/demodulation (OFDM 변복조를 위한 단일 메모리 구조의 FFT/IFFT 코어 생성기)

  • Yeem, Chang-Wan;Jeon, Heung-Woo;Shin, Kyung-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.05a
    • /
    • pp.253-256
    • /
    • 2009
  • This paper describes a core generator (FFT_Core_Gen) which generates Verilog HDL models of 8 different FFT/IFFT cores with $N=64{\times}2^k$($0{\leq}k{\leq}7$ for OFDM-based communication systems. The generated FFT/IFFT cores are based on in-place single memory architecture, and use a hybrid structure of radix-4 and radix-2 DIF algorithm to accommodate various FFT lengths. To achieve both memory reduction and the improved SQNR, a conditional scaling technique is adopted, which conditionally scales the intermediate results of each computational stage, and the internal data and twiddle factor has 14 bits. The generated FFT/IFFT cores have the SQNR of 58-dB for N=8,192 and 63-dB for N=64. The cores synthesized with a $0.35-{\mu}m$ CMOS standard cell library can operate with 75-MHz@3.3-V, and a 8,192-point FFT can be computed in $762.7-{\mu}s$, thus the cores satisfy the specifications of wireless LAN, DMB, and DVB systems.

  • PDF