• Title/Summary/Keyword: Hybrid generation system

Search Result 465, Processing Time 0.026 seconds

DC/DC Converter Control for Photovoltaic/Fuel Cell Hybrid Generation system (태양광.연료전지 복합발전 시스템의 DC/DC 컨버터 제어 시뮬레이션)

  • Park, So-Ri;Park, Sang-Hoon;Won, Chung-Yuen;Jung, Yong-Chae;Kim, Yeong-Ryeol
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.353-356
    • /
    • 2008
  • This paper is proposed that the photovoltaic/fuel cell hybrid generation system for the stand-alone system. In case of the photovoltaic generation system, it depends on the weather condition, irradiation and so on... On the contrary, fuel cell has not this limitation. It can be interactive generation system between photovoltaic and fuel cell. This paper simulated stand-alone co-generation system based on the control of DC link. Moreover, 1[kw] BLDC motor system with speed and hysteresis current controller is used for the proposed system.

  • PDF

Fluctuating Reduction Method for Generation Power of the Wind-PV Hybrid System

  • Oh, Jin-Seok;Lee, Ji-Young
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.80-85
    • /
    • 2004
  • This paper reports the performance of a CB (Circuit Breaker) and converter for the battery operated Wind-PV (Photovoltaic) system. For this purpose, a fluctuating reduction controller for an electric generation hybrid (wind+PV) system is suggested. The method operates a wind turbine, PV, CB, converter and battery. Integration of wind and PV sources, which are generally complementary, usually reduce the capacity of the battery. Also, CB controls the overvoltage of the generation system. The objective is to control the operation of the converter and the CB and reduce power fluctuation. This paper includes discussion on system performance, power quality, fluctuation and effect of the randomness of the wind.

Solar Thermal Hybrid Power Generation: technology overview and state of the art in Korea (태양열 복합발전기술의 개요와 국내 연구개발 현황)

  • Kim Jin-Soo;Kang Yong-Heack;Lee Sang-Nam;Yoon Hwan-Ki;Yu Chang-Kyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.412-415
    • /
    • 2005
  • Solar thermal power generation is one of promising and well-proven ways to convert solar energy to electricity. Though it requires high initial cost for system construction and continuous efforts for maintainment. it is more positive in terms of efficiency than other solar power generation technologies. Moreover, solar thermal power generation allows additional benefits of cheap thermal storage and easy hybridization with other fossil fuel-driven power generation. Owing to these benefits, large scale solar thermal power generation technology is expected to be competitive to other commercial technologies in the near future. In this paper an overview on the solar thermal hybrid power generation technology and the state of the art in Korea were briefly introduced.

  • PDF

Development of Flapping Type Wind Turbine System for 5 kW Class Hybrid Power Generation System

  • Lee, Haseung;Kong, Changduk;Park, Hyunbum
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Even though the differential drag type machines of the vertical wind turbines are a bit less efficient than the lift type machines such as Darrieus type machines, they have an advantage of low starting torque. The flapping blade type wind turbine is a specific type of the differential drag machines, and it has no need for orientation as well as quite low starting torque. This work is to develop an innovative 5kW class flapping type vertical wind turbine system which will be applicable to a hybrid power generation system driven by the diesel engine and the wind turbine. The parametric study was carried out to decide an optimum aerodynamic configuration of the wind turbine blade. In order to evaluate the designed blade, the subscale wind tunnel test and the performance test were carried out, and their test results were compared with the analysis results.

Design of the Electronic Anti-Fouling System for a Wave Energy Converter

  • Lee, Ji-Young;Oh, Jin-Seok
    • Journal of Navigation and Port Research
    • /
    • v.33 no.7
    • /
    • pp.501-504
    • /
    • 2009
  • There are many difficulties to supply constant power to marine facilities which operate in the sea. Especially, there is a limit to stand alone power supply systems due to the influence of weather conditions. That's why a hybrid power supply system is required to overcome these problems. This paper will describe an Electronic Anti-Fouling System (EAFS) to maximise the power efficiency for a solar - wave hybrid power generation system. A main factor reducing the efficiency of a Wave Energy Converter (WEC) is due to the attachment of aquatic life forms. Therefore the aim of this research is to develop a simulation programme to enable the design of more efficient EAFS for hybrid power generation systems and to provide valuable data for production of more efficient EAFS.

Internet Monitoring of Wind-Photovoltaic Hybrid Generation System (풍력-태양광 복합발전 시스템의 인터넷 모니터링)

  • Yang, Si-Chang;Moon, Chae-Joo;Chang, Young-Hak;Soh, Soon-Yeol;Chung, Ji-Hyun;Kim, Eui-Sun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.43-48
    • /
    • 2006
  • Recently, many researchers have shown great interest in wind-photovoltaic hybrid generation system which promotes electric power supply safely and progress of energy usage efficiently with complementary cooperation of a wind generation system and photovoltaic generation system. To use this hybrid generation system stably and effectively, we established a system which can acquire, analyse and save data and monitored remotely using internet. We constructed the signal conditioning circuit and used many kinds of converters to measure physical quantities such as wind velocity, intensity of illumination and temperature as well as many kinds of voltage and current for AC and DC. we acquired data from computer with data acquisition board, developed server program and client program which can download data that is monitored and saved in realtime at remote place. We analysed the measured data in relation to many conditions such as time and weather conditions.

A Study on Hybrid Power Generation System for Hour-Flight Drone (시간체공 드론 적용을 위한 하이브리드 동력시스템 연구)

  • Myung-Wook Choi;Seung-Jin Yang;Jung-Min Lim;Chae-Joo Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.269-276
    • /
    • 2023
  • In this research works, we propose a hybrid power generation system for drone capable of staying in the air for more than 1 hour. This power system converts the alternating current generated by the generator into direct current through a diode bridge circuit to charge the battery and uses a battery system having separated cells to obtain high controllability of the power system. The fuel efficiency and the power output for individual load were analyzed, and also the performance of a selected generator was studied in this paper. The drone which is equipped with the proposed hybrid power generation system calculated 0.82 ratio for weight vs power output, and flight time of drone showed 4,179 seconds.

The Demonstration Research on Hybrid Power Generation System Based on Wind Power (풍력기반의 하이브리드 발전시스템의 실증연구)

  • Ahn, Jae-Young;Lee, Hwa-Choon;Song, Sung-Geun;Lee, Sang-Hun;Cho, Su-Eog;Park, Sung-Joon;Kim, Gwang-Heon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.10
    • /
    • pp.106-113
    • /
    • 2010
  • In this paper, the empirical study for a hybrid generation system based on wind power which is leading renewable energy was performed. The simulation for the overall operation of the wind generator, diesel generators, monitoring system and a central controller operated in Demonstration Complex was carried out. In addition, the adequacy of the control algorithm was examined through the experiments.

Control Model of 1 kW Class Tactical Hybrid Power Generation System with Liquid Fuel Processor (야전용 액체 연료개질 1 kW급 하이브리드 전원시스템 제어 연구)

  • Ji, Hyun-Jin;Ha, Sang-Hyun;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.732-739
    • /
    • 2011
  • A fuel cell/secondary battery hybrid power generation system could extend well beyond the efficiency and interoperability of the conventional diesel generator. The suggested power source system consists of 2.3 kW class PEMFC, 100 Ah lithium polymer battery, and two DC/DC converters by serial connection type. It was known that interoperability of sub-systems is the key factor for stable and optimal control of the hybrid power generation system. The modeling and simulation methods have been proposed to reduce the number of configurations and performance tests for components selection and select the optimized control condition of the power generation system. The control model for power source system is implemented based on the empirical formulation and carried out in the Matlab/Simulink environment. The results show that the simulation can be used to establish the algorism of prototype and increase the durability of the power source system.