• Title/Summary/Keyword: Hybrid generation

Search Result 835, Processing Time 0.029 seconds

Control Model of 1 kW Class Tactical Hybrid Power Generation System with Liquid Fuel Processor (야전용 액체 연료개질 1 kW급 하이브리드 전원시스템 제어 연구)

  • Ji, Hyun-Jin;Ha, Sang-Hyun;Kim, Young-Chul;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.732-739
    • /
    • 2011
  • A fuel cell/secondary battery hybrid power generation system could extend well beyond the efficiency and interoperability of the conventional diesel generator. The suggested power source system consists of 2.3 kW class PEMFC, 100 Ah lithium polymer battery, and two DC/DC converters by serial connection type. It was known that interoperability of sub-systems is the key factor for stable and optimal control of the hybrid power generation system. The modeling and simulation methods have been proposed to reduce the number of configurations and performance tests for components selection and select the optimized control condition of the power generation system. The control model for power source system is implemented based on the empirical formulation and carried out in the Matlab/Simulink environment. The results show that the simulation can be used to establish the algorism of prototype and increase the durability of the power source system.

Segmentation of Bacterial Cells Based on a Hybrid Feature Generation and Deep Learning (하이브리드 피처 생성 및 딥 러닝 기반 박테리아 세포의 세분화)

  • Lim, Seon-Ja;Vununu, Caleb;Kwon, Ki-Ryong;Youn, Sung-Dae
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.965-976
    • /
    • 2020
  • We present in this work a segmentation method of E. coli bacterial images generated via phase contrast microscopy using a deep learning based hybrid feature generation. Unlike conventional machine learning methods that use the hand-crafted features, we adopt the denoising autoencoder in order to generate a precise and accurate representation of the pixels. We first construct a hybrid vector that combines original image, difference of Gaussians and image gradients. The created hybrid features are then given to a deep autoencoder that learns the pixels' internal dependencies and the cells' shape and boundary information. The latent representations learned by the autoencoder are used as the inputs of a softmax classification layer and the direct outputs from the classifier represent the coarse segmentation mask. Finally, the classifier's outputs are used as prior information for a graph partitioning based fine segmentation. We demonstrate that the proposed hybrid vector representation manages to preserve the global shape and boundary information of the cells, allowing to retrieve the majority of the cellular patterns without the need of any post-processing.

Power Balancing Control Method of A Residential Distributed Generation System using Photovoltaic Power Generation and Polymer Electrolyte Fuel Cells (PV와 PEFC를 병용한 가정용 분산 전원 시스템의 전력평준화 제어법)

  • Yoon, Young-Byun;Mun, Sang-Pil;Park, Han-Seok;Woo, Kyung-Il
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.335-339
    • /
    • 2016
  • Output power in photovoltaic systems changes steeply with the change of the sun intensity. The change of output power has influence on the electric power quality of the system. This paper proposes a residential distributed generation system using photovoltaic power generation and polymer electrolyte fuel cells(hybrid systems). In order to level the output power which changes steeply the polymer electrolyte fuel cells are connected to the photovoltaic power generation system in parallel. Thus the generated power of all the system can be leveled. However, the steep generated power in the photovoltaic power generation system can not be leveled. Therefore, the electric double layer capacitor(EDLC) is connected in parallel with the hybrid systems. It is confirmed by the simulation that the proposed distributed generation system is available for a residential supply.

3D Line Segment Detection using a New Hybrid Stereo Matching Technique (새로운 하이브리드 스테레오 정합기법에 의한 3차원 선소추출)

  • 이동훈;우동민;정영기
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.4
    • /
    • pp.277-285
    • /
    • 2004
  • We present a new hybrid stereo matching technique in terms of the co-operation of area-based stereo and feature-based stereo. The core of our technique is that feature matching is carried out by the reference of the disparity evaluated by area-based stereo. Since the reference of the disparity can significantly reduce the number of feature matching combinations, feature matching error can be drastically minimized. One requirement of the disparity to be referenced is that it should be reliable to be used in feature matching. To measure the reliability of the disparity, in this paper, we employ the self-consistency of the disunity Our suggested technique is applied to the detection of 3D line segments by 2D line matching using our hybrid stereo matching, which can be efficiently utilized in the generation of the rooftop model from urban imagery. We carry out the experiments on our hybrid stereo matching scheme. We generate synthetic images by photo-realistic simulation on Avenches data set of Ascona aerial images. Experimental results indicate that the extracted 3D line segments have an average error of 0.5m and verify our proposed scheme. In order to apply our method to the generation of 3D model in urban imagery, we carry out Preliminary experiments for rooftop generation. Since occlusions are occurred around the outlines of buildings, we experimentally suggested multi-image hybrid stereo system, based on the fusion of 3D line segments. In terms of the simple domain-specific 3D grouping scheme, we notice that an accurate 3D rooftop model can be generated. In this context, we expect that an extended 3D grouping scheme using our hybrid technique can be efficiently applied to the construction of 3D models with more general types of building rooftops.

The Hybrid Road Lighting Control System Design using Solar-Light Generation (태양광 발전을 이용한 하이브리드 도로조명 점등제어 시스템 설계)

  • Hong, Sung-Il;Lin, Chi-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.109-120
    • /
    • 2013
  • In this paper we proposed the design of the hybrid road lighting control system using solar-light generation. The proposed hybrid road lighting control system be power offer through hybrid controller using Solar-Light Generation, and it is designed so that it can control lighting up. To control supply of continuous power when during power shortages. And the gateway be transmit control command using zigbee to road lighting to ensure that automatic lighting control on human sensing. In this case, the gateway is apply the lighting control algorithm that decisions to the status of the system by a pre-set time schedule and be able to operate. In this paper, the proposed efficiency analysis results of a hybrid road lighting control system was consumed power of 129.6W per day, 3.8KW per month, 47.3KW per annual. As a result, it were able to increase the energy efficiency than existing lighting control system by reduce power consumption of 76.2% and the electricity prices of 76.8%.

Fruit Quality Characteristics in Second Generation (F2) Hybrid Cultivar of Minipaprika (Capsicum annuum L.)

  • Luitel, Binod Prasad;Lee, Taek Jong;Oyuntugs, Tserendendev;Kang, Won Hee
    • Korean Journal of Breeding Science
    • /
    • v.43 no.2
    • /
    • pp.120-125
    • /
    • 2011
  • A field experiment was conducted to examine the fruit quality characters in second generation ($F_2$) hybrid cultivar and to compare the fruit characters with original $F_1$ hybrid cultivar of minipaprika (yellow and orange type) at the Research Farm, Hwacheon in July, 2010. Fruit characters varied within $F_2$ population of each minipaprika type. In minipaprika yellow, fruit weight varied from 12.2 g to 50.8 g (average 28.5 g) and fruit length/width varied from 1.4 to 2.8 (average, 2.0). Pericarp thickness ranged from 1.8 mm to 4.1 mm (average, 2.9 mm). Total soluble solid (TSS) varied from $6.2^{\circ}Brix$ to $13.5^{\circ}Brix$ with an average of $8.7^{\circ}Brix$. Fruit volume varied from 10.3 cc to 46.7 cc with an average of 24.4 cc. In minipaprika orange type, fruit weight ranged from 19.7 g to 42.4 g (average, 29.0 g) and fruit length/width varied from 1.5 to 2.6 (average, 2.0). Pericarp thickness varied from 2.1 mm to 4.1 mm with an average of 3.0 mm. TSS varied from $5.0^{\circ}Brix$ to $12.2^{\circ}Brix$ (average, $7.9^{\circ}Brix$) and average fruit volume was 24.6 cc ranging from 10.7 cc to 35.0 cc. The average fruit quality characters in $F_2$ population in both yellow and orange minipaprika did not differ from their $F_1$ hybrid parent and $F_2$ seed can be an additional way to supply high yielding hybrid cultivars at lower cost to the minipaprika growers.

Algorithm Calculating Optimal DG Capacity Considering Operating Deficit in Hybrid Internal Combustion Generation (하이브리드 내연발전에서 도서 운영 결손액을 고려한 분산전원 최적 용량 산정 알고리즘)

  • Son, Joon-Ho;Kim, Mi-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.655-660
    • /
    • 2018
  • Internal combustion generation (ICG) is used to supply power to islands due to geographical characteristics, but there are some problems, such as considerable operating cost, salt pollution, and environmental pollution. For these islands, KEPCO pays a significant amount of operating deficit each year, especially for the fuel and servicing costs, which account for a large portion of this deficit. Integrated ICG (IICG) through an offshore cable between near islands is being considered to decrease servicing costs. Distributed generation (DG) is also being introduced on the islands because of the demand for a low-carbon society. In hybrid internal combustion generation (HICG), DG is introduced into IICG, which can be applied because the DG output is insufficient due to environmental characteristics, and the IICG is used as an auxiliary power source. Therefore, this paper proposes an algorithm to estimate the optimal DG capacity that can be introduced in accordance with the KEPCO operating deficit in the HICG. According to simulations, the optimal DG capacity depends on the fuel cost and load capacity. The validity of the proposed algorithm was confirmed for multiple islands with different peak loads.

A Study on the Energy Management Control of Hybrid Excavator (하이브리드 굴삭기의 에너지 관리 제어에 관한 연구)

  • Yoo, Bong Soo;Hwang, Cheol Min;Joh, Joongseon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.12
    • /
    • pp.1304-1312
    • /
    • 2012
  • According to the successful development of hybrid vehicle, hybridization of construction equipments like excavator, wheel loader, and backhoe etc., is gaining increasing attention. However, hybridization of excavator and commercial vehicle is very different. Therefore a specialized energy management control algorithm for excavator should be developed. In this paper, hybridization of excavators is investigated and a new energy management control algorithm is proposed. Four control parameters, i.e., lower baseline, upper baseline, idling generation speed, and idling generation torque, are newly introduced and a new operating principle using those four control parameters is proposed. The use of Genetic Algorithm for the optimization of the four control parameters from the view point of minimization of fuel consumption for standard excavating operation is suggested. In order to verify the proposed algorithm, dedicated simulation program of hybrid excavator was developed. The proposed algorithm is applied to a specific hydraulic excavator and 20.7% improvement of fuel consumption is achieved.

A Study on Compressor Map Generation of a Gas Turbine Engine Using Hybrid Intelligent Method (하이브리드 기법을 이용한 가스터빈 엔진의 압축기 성능선도 생성에 관한 연구)

  • Kong, Chang-Duk;Kho, Seong-Hee;Ki, Ja-Young
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.54-60
    • /
    • 2006
  • A method for generating the compressor map from some performance measuring data using the hybrid intelligent technique was newly proposed. In order to improve accuracy of the traditional scaling method, a method to generate the compressor map using the GAs(Genetic Algorithms) was previously proposed, but the method has a drawback that it can not find correctly surge and choke points of the compressor map. However, the proposed hybrid intelligent method can determine obviously those points as well as improve the accuracy of the compressor map through complementarily using the GAs and the scaling method.

Managing and Minimizing Cost of Energy in Virtual Power Plants in the Presence of Plug-in Hybrid Electric Vehicles Considering Demand Response Program

  • Barati, Hassan;Ashir, Farshid
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.568-579
    • /
    • 2018
  • Virtual power plants can be regarded as systems that have entered the network after restructure of power systems. In fact, these plants are a set of consumers capable of consuming and generating power. In response to widespread implementation of plug-in hybrid electric vehicles, further investigation of energy management in this type of power plants seems to be of great value. In effect, these vehicles are able to receive and inject power from/into the network. Hence, study of the effects of these vehicles on management of virtual power plants seems to be illuminative. In this paper, management of power consumption/generation in virtual power plants has been investigated in the presence of hybrid electric vehicles. The objective function of virtual power plants problem management is to minimize the overall costs including not only the costs of energy production in power generation units, fuels, and degradation of batteries of vehicles, but also the costs of purchasing electricity from the network. Furthermore, the constraints on the operational of plants, loads and hybrid vehicles, level of penalty for greenhouse gas emissions ($CO_2$ and $NO_x$) produced by power plants and vehicles, and demand response to the immediate price of market have all been attended to in the present study. GAMS/Cplex software system and sample power system have been employed to pursue computer implementation and simulation.