• Title/Summary/Keyword: Hybrid generation

Search Result 835, Processing Time 0.032 seconds

Energy Forecasting Information System of Optimal Electricity Generation using Fuzzy-based RERNN with GPC

  • Elumalaivasan Poongavanam;Padmanathan Kasinathan;Karunanithi Kandasamy;S. P. Raja
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2701-2717
    • /
    • 2023
  • In this paper, a hybrid fuzzy-based method is suggested for determining India's best system for power generation. This suggested approach was created using a fuzzy-based combination of the Giza Pyramids Construction (GPC) and Recalling-Enhanced Recurrent Neural Network (RERNN). GPC is a meta-heuristic algorithm that deals with solutions for many groups of problems, whereas RERNN has selective memory properties. The evaluation of the current load requirements and production profile information system is the main objective of the suggested method. The Central Electricity Authority database, the Indian National Load Dispatch Centre, regional load dispatching centers, and annual reports of India were some of the sources used to compile the data regarding profiles of electricity loads, capacity factors, power plant generation, and transmission limits. The RERNN approach makes advantage of the ability to analyze the ideal power generation from energy data, however the optimization of RERNN factor necessitates the employment of a GPC technique. The proposed method was tested using MATLAB, and the findings indicate that it is effective in terms of accuracy, feasibility, and computing efficiency. The suggested hybrid system outperformed conventional models, achieving the top result of 93% accuracy with a shorter computation time of 6814 seconds.

A feasibility study on the hybrid power generation system considering of electricity needs' fluctuation of coastal area's houses (해안지역 주거시설을 위한 전력수요 변동 대응형 하이브리드 발전시스템 도입 효과 예측에 관한 사례연구)

  • Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.977-983
    • /
    • 2013
  • Based on the consideration of the hourly patterns of the electricity power consumption, this study predicted the effectiveness of hybrid power generation system, which is composed with wind power generator and photovoltaic generator. And this case study is performed at Konrido, which is a affiliated island of Kyeongsangnam-do. As the results, it is obvious that it is not efficient to cover the whole electricity power consumption only with any single power generating system, because the hourly patterns of electricity power consumption, wind power generation and photovoltaic generation are quite different. And because the wind is being through almost 24 hours, it is also found out that wind power generating system with storage battery is the most efficient combination for this case study.

The Development of Hybrid Power System using small Wind and Solar Energy (소형 풍력과 태양 에너지를 이용한 하이브리드 발전시스템 개발)

  • Kim, Min;Lee, Dong Heon;Jeong, Jae-Hoon;Park, Won-Hyeon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.250-251
    • /
    • 2015
  • The situation requires a global alternative energy resources due to the lack of rapid consumption of fossil fuel and nuclear fuel that occurs in nature. There are a number of alternative energy research and development in the world today. Of which there is an existing wind power generation system has been developed into a large-scale systematic trend of small wind power systems have created a wind power generation system using a simple principle. Existing small wind turbine system is a situation that is in many places a deterioration odor problems and maintenance of power generation efficiency because it came to be developed systematically. In this paper, we developed a hybrid power system that can develop the solar energy at the same time as the increase in the small wind power generation efficiency and the system to develop that can efficiently maintain the hybrid power generation system through the network.

  • PDF

A Study on the Application Trends of Next-Generation Solar Cells and the Future Prospects of Smart Textile Hybrid Energy Harvesting Devices : Focusing on Convergence with Industrial Materials (차세대 태양전지의 활용 동향 및 스마트 텍스타일 하이브리드 에너지 하베스팅 소자의 미래전망에 관한 연구 : 산업 소재와의 융합 중심)

  • Park, Boong-Ik
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.151-158
    • /
    • 2021
  • In this paper, we analyzed the latest research trends, challenges, and potential applications of next-generation solar cell materials in various industrial fields. In addition, future prospects and possibilities of Smart Textile Hybrid Energy Harvesting Devices that will supply electricity by combining with wearable IoT devices are presented. The hybrid textile energy harvesting device fused next-generation solar cells with tribo-piezoelectric devices will develop into new 'Convergence Integrated Smart Wear' by combining the material itself with wearable IoT devices in the era of the 4th industrial revolution. The next-generation nanotechnology and devices proposed in this paper will be applied to the field of smart textile with an energy harvesting function. And we hope it will be a paradigm shift that evolves into creative products which provide AI services such as medical & healthcare by convergence with the future smart wear industry.

Hybrid Artificial Immune System Approach for Profit Based Unit Commitment Problem

  • Lakshmi, K.;Vasantharathna, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.959-968
    • /
    • 2013
  • This paper presents a new approach with artificial immune system algorithm to solve the profit based unit commitment problem. The objective of this work is to find the optimal generation scheduling and to maximize the profit of generation companies (Gencos) when subjected to various constraints such as power balance, spinning reserve, minimum up/down time and ramp rate limits. The proposed hybrid method is developed through adaptive search which is inspired from artificial immune system and genetic algorithm to carry out profit maximization of generation companies. The effectiveness of the proposed approach has been tested for different Gencos consists of 3, 10 and 36 generating units and the results are compared with the existing methods.

Power System Congestion Problems using Hybrid Control of PST and Real Power Generation (위상변환기와 발전출력 하이브리드 제어를 이용한 계통 혼잡처리 방안)

  • Kim, Kyu-Ho;Song, Kyung-Bin
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.223-225
    • /
    • 2005
  • This paper presents a scheme to solve the congestion problem using hybrid control with phase-shifting transformer(PST) and power generation in power systems. A good design of PST and power generation control can improve total transfer capability(TTC) in interconnected systems. This paper deals with an application of optimization technique for TTC calculation. The optimization method is used to maximize power flow of tic line subject to security constraints such as voltage magnitude and real power flow. The proposed method is applied to 10 machines 39 buses model systems to show its effectiveness.

  • PDF

Thermal Test of High-Temperature Solar Concentrating System for Hybrid Power Generation (복합발전용 고온 집광시스템의 집열 특성 분석)

  • Kim, Jin-Soo;Lee, Sang-Nam;Kang, Yong-Heack;Yun, Hwan-Ki;Yun, Chang-Kyun;Kim, Jong-Kyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.580-583
    • /
    • 2006
  • A small-scale solar concentrating system was developed and demonstrated for supplying process heat required in solar thermo chemical reaction. The concentration system consists of a heliostat equipped with a solar tracking device and a dish concentrator. From the initial thermal test of the concentrating system it was found that the system works very well with around 500-600 concentration ratio capable of supplying about 3kW therml energy to the reactor. Once the concentration system was turned on, the reactor temperature rapidly increased over $1,000^{\circ}C$ and could be maintained high enough for solar chemical reaction.

  • PDF

The Performance Improvement of Hybrid Energy Harvesting Block and the Evaluation on Power Generation Performance (하이브리드 에너지하베스팅 블록의 성능개선 및 발전성능 평가)

  • Kim, Hyo-Jin;Park, Ji-Young;Jin, Kyu-Nam
    • Land and Housing Review
    • /
    • v.7 no.3
    • /
    • pp.131-136
    • /
    • 2016
  • The aim of this study was to improve the performance of hybrid energy harvesting block merge the vibrations and the pressure developed in the previous study. The power generation performance of the energy block improved in this manner was measured and compared with the energy performance of the products previously developed. In previous models, the center has placed a piezoelectric, the two sides had arranged a vibration applying electromagnetic inducing type. Improved model was disposed three in a row of three unit modules for one block. We change the design in the following way. That is, a unit module has been placed the upper piezoelectric body, the lower portion were arranged three electron donation. In laboratory conditions, the power generation performance evaluation results of the improved energy block is as follows. Once when the vibration, power generation was determined to 1.066W. When compared with previous studies, and power generation performance is improved up to 235%. When the vibration in a row 5, power generation was determined to 1.830W. When compared with previous studies, the performance is improved to 177%. The purpose of developing a hybrid energy block is intended to produce electricity by the pressure and vibration when a vehicle passes through the energy block installed in the car park the mouth portion. Electricity produced will try to take advantage of for the purpose of operating a guiding beacon and LED signage in the parking lot entrance. Therefore, it is determined that there is a need in the experiment to compare the performance of the power generation in the field.

An Experimental Study on Dynamic Performance of Large Floating Wave-Offshore Hybrid Power Generation Platform in Extreme Conditions (대형 부유식 파력-해상풍력 복합발전 구조물의 극한환경 운동 성능에 대한 실험적 연구)

  • Kim, Kyong Hwan;Hong, Jang Pyo;Park, Sewan;Lee, Kangsu;Hong, Keyyong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.7-17
    • /
    • 2016
  • The present study experimentally considers dynamic performance of large floating wave-offshore hybrid power generation platform in extreme conditions. In order to evaluate the motion performance of the large floating hybrid power generation platform, 1/50 scaled model was manufactured. A mooring line was also manufactured, and free-decay and static pull-out tests were carried out to check the mooring model. A mooring line table was introduced to satisfy the water depth, and environmental conditions were checked. Motion responses in regular waves were measured and complicated environmental conditions including wave, wind, and current were applied to see the dynamic performance in extreme/survival conditions. Maximum motion and acceleration were judged following the design criteria, and maximum offset and mooring tension were also checked based on the rule. The characteristics of hybrid power generation platform are discussed based on these data.